微观经济与数字经济教研室学术讲座

发布人:韦芳三 发布日期:2025-04-28阅读次数:171

报告题目:Combinatorial Learning and Simple Strategy
报  告 人:刘一鸣(伦敦大学学院 管理学院 博士后)
主  持 人:焦倩(中山大学岭南学院 副教授)
时      间:2025年5月8日 (周四) 14:30
地      址:岭南堂伍沾德会议室(204)
语      言:中英文

摘要:
       This paper models a circumstance in which there are N conditionally independent experiments, but a decision maker (DM) can only examine at most K of them sequentially. An important feature of the information structure is that those experiments can give each state conclusive signals, and each can only be checked once, i.e. without replacement. I introduce a notion of "simple strategy", which allows DM to make decisions at each decision node only depending on partial information of the continuation decision tree. I show that in a 2-state-2-action setting, the optimal strategy is always a simple strategy. The optimal learning strategy also indicates that the DM's strategy may be distorted by some Blackwell-dominated information sources. In the generalized J-state-L-action setting, I give a sufficient and necessary condition under which the optimal strategy is simple when the DM has full learning capacity.

 

报告人介绍:


       刘一鸣,现任伦敦大学学院(UCL)经济学与金融学方向博士后研究员,导师为杨明教授。他本科毕业于中山大学岭南学院,随后在威斯康星麦迪逊大学获得经济学硕士学位并在密歇根大学获得博士学位,师从 Tilman Börgers教授。他的研究聚焦经济理论与金融领域,重点关注信息获取、机制设计与市场设计。其工作论文涵盖(1)信息获取与信息设计,以及其与机制设计(垄断定价)的组合模型;(2)博弈论中合理化解概念与无关替代独立性。教学方面,曾担任博士生课程《数理经济学》、《微观经济理论》及本科生《中级宏观经济学》、《博弈论》等课程的讲师,具备丰富的教学经验。


       欢迎感兴趣的师生参加!