第650期岭南学术论坛(经济学系列Seminar)

Statistical Inference for High-Dimensional Spectral Density Matrix

发布人:韦芳三
主题
Statistical Inference for High-Dimensional Spectral Density Matrix
活动时间
-
活动地址
岭南堂汪道涵会议室(101)
主讲人
常晋源(西南财经大学统计学院  教授)
主持人
林建浩(中山大学岭南学院  教授)

语 言            中文+英文

 

 

摘要:

The spectral density matrix is a fundamental object of interest in time series analysis, and it encodes both contemporary and dynamic linear relationships between component processes of the multivariate system. In this paper, we develop novel inference procedures for the spectral density matrix in the high-dimensional setting. Specifically, we introduce a new global testing procedure to test the nullity of the cross-spectral density for a given set of frequencies and across pairs of component indices. For the first time, both Gaussian approximation and parametric bootstrap methodologies are employed to conduct inference for a high-dimensional parameter formulated in the frequency domain, and new technical tools are developed to provide asymptotic guarantees of the size accuracy and power for global testing. We further propose a multiple testing procedure for simultaneously testing the nullity of the cross-spectral density at a given set of frequencies. The method is shown to control the false discovery rate. Both numerical simulations and a real data illustration demonstrate the usefulness of the proposed testing methods.

 

报告人介绍:

       常晋源,2013年9月至2017年2月在澳大利亚墨尔本大学数学与统计学院任研究员,2017年3月开始全职在西南财经大学统计学院工作。现为西南财经大学数据科学与商业智能联合实验室执行主任、教授、博士生导师、四川省特聘专家、四川省统计专家咨询委员会委员。2021年获得国家杰出青年科学基金资助。曾荣获霍英东教育基金会第十七届高等院校青年教师奖一等奖(2020)、第八届高等学校科学研究优秀成果奖三等奖(2020)、第十五届四川省青年科技奖(2020)、四川省第十八次社会科学优秀成果三等奖(2019)、中国数学会钟家庆数学奖(2013)和国际数理统计协会Laha Award(2012)等奖励。

 

 

 

        欢迎感兴趣的师生参加!

        中山大学岭南学术论坛分经济学和金融学两大系列,是定期邀请国内外优秀学者前来开展学术交流的平台。每系列每个月定期举办2-3次。目前已经成功举办多期,并得到了各界的高度评价。