岭南学术论坛系列讲座(第674期)
Multivariate Spatiotemporal Models with Low Rank Coefficient Matrix
报告内容:
Multivariate spatiotemporal data arise frequently in practical applications, often involving complex dependencies across cross-sectional units, time points and multivariate variables. In the literature, few studies jointly model the dependence in three dimensions. To simultaneously model the cross-sectional, dynamic and cross-variable dependence, we propose a multivariate reduced-rank spatiotemporal model. By imposing the low-rank assumption on the spatial influence matrix, the proposed model achieves substantial dimension reduction and has a nice interpretation, especially for financial data. Due to the innate endogeneity, we propose the quasi-maximum likelihood estimator (QMLE) to estimate the unknown parameters. A ridge-type ratio estimator is also developed to determine the rank of the spatial influence matrix. We establish the asymptotic distribution of the QMLE and the rank selection consistency of the ridge-type ratio estimator. The proposed methodology is further illustrated via extensive simulation studies and two applications to a stock market dataset and an air pollution dataset.
报告人简介:

兰伟,博士,西南财经大学统计学院副院长,教授,博士生导师。2009年毕业于南开大学数学学院,2013年获得北京大学经济学博士学位。2013年9月加入西南财经大学统计学院,从讲师直到教授。主持自科科学基金青年和面上项目以及多项重点项目子课题,2024年获国家自然科学基金优秀青年科学基金项目资助。兰伟教授的研究领域为高维数据统计推断、大规模网络数据分析以及风险管理和投资组合优化,研究的问题主要包括大型协方差矩阵估计和资产定价模型检验和评估等,在Annals of Statistics, Journal of the American Statistical Association, Journal of Econometrics, Journal of Business and Economic Statistics,经济学季刊等国内外权威期刊发表论文50余篇,学术工作被国内外顶级学者广泛关注及引用。
欢迎感兴趣的师生参加!
中山大学岭南学术论坛系列讲座是中山大学岭南学院自2012年推出的品牌学术活动,迄今已成功举办670多期,得到了学界的高度评价。 岭南学术论坛分经济学和金融学两大系列,是定期邀请国内外优秀学者前来开展学术交流的平台。