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1 Introduction 

In the financial market, a portfolio is sometimes valued less than the market value of its 

underlying components. For example, closed-end fund shares are typically traded at prices 

lower than the per share market value of its underlying assets (e.g., Lee, Shleifer and Thaler, 

1991; Chen, Kan, and Miller, 1993; Pontiff, 1996; Hwang, 2011; Wu, Wermers, and Zechner, 

2016; Hwang and Kim, 2017); mergers and acquisitions often have negative combined 

announcement returns from acquirers and targets (for example, Morck, Shleifer, and Vishny, 

1990; Moeller, Schlingemann, and Stulz, 2005; Masulis, Wang, and Xie, 2007; Cai and Sevilir, 

2012); conglomerates are usually worth less than a portfolio of comparable single-segment 

firms (e.g., Lang and Stulz, 1994; Berger and Ofek, 1995; Servaes, 1996; Lamont and Polk, 

2001; Laeven and Levine, 2007; Hund, Monk, and Tice, 2010). These phenomena are puzzling 

because they violate the market efficiency hypothesis. In this paper, I provide a novel and 

unifying explanation for these puzzles based on the prospect theory. 

Under the prospect theory framework of Tversky and Kahneman (1992), Barberis and 

Huang (2008) show that a lottery-like stock (i.e., a stock with an extremely positively skewed 

return distribution) can become overpriced because investors overweight the small probability 

of a large payoff. To analyze the aforementioned phenomena, I extend Barberis and Huang 

(2008) and consider multiple lottery-like stocks. These lottery-like stocks can provide extreme 

positive payoffs with a small probability, but they may or may not produce extreme payoffs at 

the same time. I solve and compare asset prices in two economies. In the first economy, 



2 
 

investors can trade these lottery-like stocks freely. In the second economy, investors can only 

trade a portfolio consisting of these lottery-like stocks. I find that the portfolio price in the 

second economy is lower than the prices of these lottery-like stocks in the first economy (the 

difference is referred as the portfolio pricing discount here after). More importantly, the 

portfolio pricing discount depends on how likely these lottery-like stocks produce extreme 

payoffs together. Specifically, when the stocks are more likely to produce extreme payoffs 

together, the portfolio pricing discount is smaller. 

The intuition behind this prediction is based on the prospect theory and the diversification 

in lottery-like features. If lottery-like stocks have a low tendency of producing extreme payoffs 

together, when they are combined into a portfolio (e.g., a closed-end fund), the return 

distribution of this portfolio will become a lot smoother than each individual stock due to 

diversification. In other words, the portfolio is less lottery-like. Under the prospect theory, this 

portfolio becomes relatively less attractive to investors and tends to be traded at a lower price. 

In contrast, when investors trade each individual lottery-like stock, the lottery-like feature 

makes the stock attractive and the stock tends to be traded at a higher price. Therefore, the 

portfolio is traded at a discount relative to the market prices of its underlying stocks. Meanwhile, 

if the underlying stocks always produce extreme payoffs together, when these stocks are 

combined into a portfolio, the portfolio obtains the same lottery-like feature. Thus, the portfolio 

is as attractive as each individual stock to investors and there is no portfolio pricing discount.  
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To test this theoretical prediction, I use closed-end funds (CEFs) as my main setting. I 

also find consistent results using mergers and acquisitions (M&As) and conglomerates. I use 

CEFs as the main setting for the following reasons. Firstly, a large body of literature has 

documented that a CEF share is typically traded at a lower price compared to the per share 

market value of its underlying assets. This discount has been a long-stand puzzle among 

academics and practitioners. Second, CEFs provide a clean setting to control firm-specific 

fundamental characteristics. Since stocks are combined and traded “as a package”, the 

difference in value between a portfolio and the sum of its holdings should not be affected by 

firm-specific fundamentals characteristics, particularly those that are potentially correlated 

with lottery-like features.1 Utilizing this advantage, my paper provides a relatively clean and 

powerful approach to test the relevance of the prospect theory and lottery-like features in 

determining asset prices, by directly comparing the market price of the portfolio with its 

intrinsic value (the market value of underlying stocks).  

Empirically, the two key variables are: (1) the lottery-like payoff; and (2) the tendency 

that lottery-like payoffs are produced together. For the lottery-like payoff, I follow Bali, Cakici, 

and Whitelaw (2011) and use the average top-five daily returns within a month (𝑀𝑎𝑥5) to 

                                                 
1  For example, Boyer, Mitton, and Vorkink (2010) use firm size (among others) to compute expected 

idiosyncratic skewness, making their measure mechanically correlated with size; Barberis, Mukherjee, and Wang 

(2016) report that their “prospect theory value” has a correlation of 36% with size and −34% with book-to-market 

ratio. 
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proxy for the degree of lottery likeness.2 I denote 𝐶𝐸𝐹_𝑀𝑎𝑥5 as the 𝑀𝑎𝑥5 for a CEF, and 

𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥5 as the average 𝑀𝑎𝑥5 from a CEF’s holdings, weighted by their holding 

percentage. The relative degree of lottery likeness, 𝐸𝑥_𝑀𝑎𝑥5, is defined as the difference 

between 𝐶𝐸𝐹_𝑀𝑎𝑥5 and 𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥5. 

To measure the tendency that stocks produce extreme payoffs together, I produce a 

measure called 𝐶𝑜𝑀𝑎𝑥 based on the top-five daily returns within a month. Specifically, for 

every possible stock pairs within a CEF’s holdings, I check the percentage of the top-five daily 

returns that are recorded in the same day, and denote it as 𝐶𝑜𝑀𝑎𝑥5 . By construction, 

𝐶𝑜𝑀𝑎𝑥5 ∈ [0,1] . The lottery likeness of each stock pair, 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 , is the average 

𝑀𝑎𝑥5 of the two stocks, weighted by holding percentage. 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 × 𝐶𝑜𝑀𝑎𝑥5 provides 

useful information about both the degree of lottery likeness and the tendency of paying out 

“jackpots” together for each stock pair. These variables are further integrated at the fund level 

based on holding weights.  

In my empirical tests, I focus on top-10 holdings from each CEF. The reasons are as 

follows. Firstly, the average CEF in my sample holds around a hundred stocks. It is impossible 

for investors to know the detailed holding list of each CEF. On the contrary, top10 holdings 

are readily observable from a fund’s website, factsheets, and financial medias (such as 

Morningstar, Yahoo! Finance, etc.) for retail investors, who are the primary investors on CEFs. 

                                                 
2 Similar results can be obtained using top 1/2/3/4 daily returns within a month as well. I use 𝑀𝑎𝑥5 for the main 

results to allow for more variation when I construct the variable to capture the tendency that lottery-like payoffs 

are produced together.  
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Second, top-10 holdings account for a substantial portion of the total portfolio value and 

represent the investment objectives of the fund. That being said, including all holding stocks 

produces qualitatively similar results. 

I find empirical results consistent with my theoretical predictions. First of all, I find that 

lottery-like features indeed get diversified at CEF level. When stocks are combined into a CEF, 

the lottery-like feature of the fund drops about 41%. Secondly, the difference in the lottery-like 

features between the CEF and its underly stocks can help explain the CEF discount. 

Specifically, a one-standard-deviation increase in the relative lottery likeness of a CEF’s top-

10 holdings (i.e., a one-standard-deviation drop in 𝐸𝑥_𝑀𝑎𝑥5) comes with 0.99% increase in 

the CEF discount (t-statistic = 2.81). Thirdly, the tendency of stocks producing extreme payoffs 

together, i.e., 𝐶𝑜𝑀𝑎𝑥5, plays an important role in affecting the CEF discount. A one-standard-

deviation increase in 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 × 𝐶𝑜𝑀𝑎𝑥5  can help offset the discount by 0.52% (t-

statistic = 2.92). Results survive the inclusion of various variables known to be associated with 

CEF discounts. For reference, the average CEF discount in my sample is 4.70%. Therefore, 

these results are both statistically and economically significant. 

Moreover, I extend my empirical tests to incorporate M&A deals and conglomerates. In 

a M&A deal, the new joint firm can be regarded as a “portfolio” which has two “underlying 

stocks”: the acquirer and the target. The combined announcement-day return from both the 

acquirer and the target (denoted as 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝐶𝐴𝑅[−1,+1]) can proxy for the difference 

between the value of the “portfolio” (the new joint firm) and the total value of its “underlying 
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assets” (the acquirer and the target as two separate firms). As my final setting, a conglomerate 

can also be regarded as a “portfolio” of different business segments. Prior literature has shown 

that a conglomerate usually has a lower market-to-book ratio compared to its single-industry 

counterparts. Consistent with the CEF setting, I find that the diversification in lottery-like 

features can help explain the combined announcement-day return from the acquirer and the 

target and the low market-to-book ratio of conglomerates. 

A potential concern from these three sets of results is that whether 𝐶𝑜𝑀𝑎𝑥 simply 

captures return correlation. It is a fair challenge because 𝐶𝑜𝑀𝑎𝑥 and return correlation are 

mechanically correlated. To show that it is indeed 𝐶𝑜𝑀𝑎𝑥 that drives my results, I conduct 

placebo tests by replacing 𝐶𝑜𝑀𝑎𝑥 with 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟, a return correlation constructed 

after excluding concurrent extreme returns. In all three settings, the results completely 

disappear. 

Since the diversification in lottery-like features hampers a CEF’s price, it is natural to 

wonder if fund managers are aware of this situation and have tried to avoid lottery-like stocks. 

I conduct additional tests based on propensity score matching to find out the answer. 

Specifically, for each of the top-10 holdings at fund inception, I collect ten pseudo stocks which 

are similar to the actual holding by reference to a host of firm characteristics but are not selected 

into the fund. I construct stock pairs from the actual top-10 holdings and the 100 pseudo 

holdings. Same as before, I compute 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5, 𝐶𝑜𝑀𝑎𝑥5, and 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 × 𝐶𝑜𝑀𝑎𝑥5 

for each stock pair. Then, I conduct logit regressions with a dependent variable equals to one 
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if the stock pair is from the actual top-10 holdings, and zero otherwise. I find that increasing 

𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 by one-standard-deviation lowers the likelihood of the two stocks being selected 

at fund inception by 19%. On the other hand, increasing 𝐶𝑜𝑀𝑎𝑥5 by one-standard-deviation 

makes the two stocks 30% more likely to be selected at fund inception. Similar analyses from 

the M&A setting shows that firms with strong lottery-like features and high 𝐶𝑜𝑀𝑎𝑥 are more 

likely to reach an M&A deal. 

My paper has the following contribution to the literature. First of all, I extend Barberis 

and Huang (2008)’s model and consider multiple lottery-like stocks and the tendency that these 

stocks produce extreme payoffs together. I show that a portfolio consisting of these lottery-like 

stocks trade at a discount, and this discount depends on how likely these lottery-like stocks 

produce extreme payoffs together. Second, I utilize CEFs, M&As, and conglomerates to test 

this prediction and find consistent results. Finally, my findings not only support prospect theory 

from a new perspective, but also provide a novel and unifying framework for three seemingly 

unrelated phenomena, i.e., the closed-end fund puzzle, the combined announcement-day return 

of a M&A deal, and the conglomerate discount. 

The rest of the paper is organized as follows: Section 2 describes my model and 

predictions. Section 3 explains data and main variables. Sections 4 presents my main results. 

Section 5 carries out further discussions on managerial implications. Section 6 concludes. 
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2 The Model 

In Section 2.1, I revisit the original model setup from Barberis and Huang (2008) with 

two identical lottery-like stocks and solve the equilibrium price for these two stocks in this 

economy as a benchmark. In Section 2.2, I introduce a second economy, in which investors 

can not directly trade these lottery-like stocks, but can only trade a portfolio with equal-weights 

on these lottery-like stocks. I describe the equilibrium conditions for this portfolio. In Section 

2.3, I provide some numerical results based on the same set of parameters adopted in Barberis 

and Huang (2008) and show how the portfolio discount is determined by the likelihood that 

these two lottery-like stocks produce extreme payoffs together (𝐶𝑜𝑀𝑎𝑥), given a fixed degree 

of lottery-like feature. In Section 2.4, I show how the portfolio discount varies with both 

𝐶𝑜𝑀𝑎𝑥 and the degree of lottery likeness. 

2.1 Model Setup 

Following Barberis and Huang (2008), a representative investor has the following value 

function: 

𝑣(𝑥) = { 𝑥𝛼

−𝜆(−𝑥)𝛽     𝑥 ≥ 0
𝑥 < 0 . (1) 

For 𝛼 ∈ (0,1), 𝛽 ∈ (0,1), and 𝜆 > 1, this value function is concave over gains, convex 

over losses, and exhibits a greater sensitivity to losses than to gains. 𝜆, which is the coefficient 

of loss aversion, determines the degree of sensitivity to losses. 
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This representative investor applies probability weighting functions to the cumulative 

probability distribution of gains and losses, instead of the probability density function. This is 

a sharp distinction proposed by Tversky and Kahneman (1992) from their original prospect 

theory. Specifically, the functional forms are: 

𝑤+(𝑃) = 𝑃𝛾

(𝑃𝛾 + (1 − 𝑃)𝛾)
1
𝛾
 , 𝑤−(𝑃) = 𝑃𝛿

(𝑃 𝛿 + (1 − 𝑃)𝛿)
1
𝛿
 , (2) 

where 𝑤+ and 𝑤− are the probability weighting functions for gains and losses, respectively. 

𝑃  is the cumulative probability distribution function. For 𝛾 ∈ (0,1)  and 𝛿 ∈ (0,1) , the 

representative investor overweights small probabilities, i.e., for small and positive 𝑃 , 

𝑤(𝑃) > 𝑃 . 

I consider a one-period economy with two dates, 𝑡 = 0  and 𝑡 = 1 . The economy 

contains a risk-free asset, which is in perfectly elastic supply and has a gross return of 𝑟𝑓 . 

There is a market portfolio and two skewed securities in this economy. The excess return on 

the market portfolio, excluding the skewed securities, is normally distributed: 

𝑟𝑚~𝑁(𝜇𝑚,  𝜎𝑚
2 ). (3) 

Each of the skewed securities follows a binomial distribution: with a low probability 𝑣, 

the security pays out a large “jackpot” 𝐽 , and with probability 1 − 𝑣, it pays out nothing. For 

a very large 𝐽  and a very small 𝑣, this binomial distribution resembles a lottery ticket. The 

returns on the skewed securities are independent of the market portfolio, and the payoffs from 

the skewed securities are infinitesimal relative to the total payoff from the market portfolio. In 
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the equilibrium, these skewed securities should be priced equally. I denote this price as 𝑝𝑙, and 

the excess return of the skewed securities, 𝑟𝑙,𝑖 (𝑖 = 1 or 2), is distributed as  

𝑟𝑙,𝑖 ~ (𝐽
𝑝𝑙

− 𝑟𝑓 , 𝑣; −𝑟𝑓, 1 − 𝑣) . (4) 

In this economy, Barberis and Huang (2008) propose an equilibrium with three global 

optima: a portfolio that combines the risk-free asset, the market portfolio, and a positive 𝜙∗ >

0 in just the first (second) skewed security; and a portfolio that holds only the risk-free asset 

and the market portfolio. They demonstrate that this proposed equilibrium does exist with the 

following parameters: (𝛼, 𝛽, 𝛾, 𝛿, 𝜆) = (0.88, 0.88, 0.65, 0.65, 2.25)  and (𝜎𝑚, 𝑟𝑓 , 𝐽 , 𝑣) =

(0.15, 1.02, 10, 0.09). In the equilibrium, (𝑝𝑙,𝜙∗) = (0.925, 0.085). This equilibrium price is 

the benchmark for the portfolio pricing in my second economy. 

2.2 Portfolio Pricing 

Now I consider a second economy. In this economy, the representative investor cannot 

directly trade the two skewed securities, but they can trade a portfolio which invests equally in 

the two skewed securities. The excess return of the portfolio depends on the probability that 

both skewed securities pay out “jackpots” at the same time. I denote 

Pr ((𝑟𝑙,1 = 𝐽
𝑝𝑙

− 𝑟𝑓) ∩ (𝑟𝑙,2 = 𝐽
𝑝𝑙

− 𝑟𝑓)) = 𝑢 . (5) 

Therefore,  

Pr ((𝑟𝑙,1 = 𝐽
𝑝𝑙

− 𝑟𝑓) ∩ (𝑟𝑙,2 = −𝑟𝑓)) = 𝑣 − 𝑢 , (6) 
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Pr ((𝑟𝑙,1 = −𝑟𝑓) ∩ (𝑟𝑙,2 = 𝐽
𝑝𝑙

− 𝑟𝑓)) = 𝑣 − 𝑢 , (7) 

Pr ((𝑟𝑙,1 = −𝑟𝑓) ∩ (𝑟𝑙,2 = −𝑟𝑓)) = 1 − 2𝑣 + 𝑢 . (8) 

I define 𝐶𝑜𝑀𝑎𝑥 as:  

𝐶𝑜𝑀𝑎𝑥 =
Pr ((𝑟𝑙,1 = 𝐽

𝑝𝑙
− 𝑟𝑓) ∩ (𝑟𝑙,2 = 𝐽

𝑝𝑙
− 𝑟𝑓))

Pr (𝑟𝑙,1 = 𝐽
𝑝𝑙

− 𝑟𝑓)
 

=
Pr ((𝑟𝑙,1 = 𝐽

𝑝𝑙
− 𝑟𝑓) ∩ (𝑟𝑙,2 = 𝐽

𝑝𝑙
− 𝑟𝑓))

Pr (𝑟𝑙,2 = 𝐽
𝑝𝑙

− 𝑟𝑓)
 

= 𝑢
𝑣
                                                (9) 

The excess return of the portfolio, 𝑟𝑠 , is distributed as: 

𝑟𝑠 ~ (𝐽
𝑝𝑠

− 𝑟𝑓 , 𝑢; 𝐽
2𝑝𝑠

− 𝑟𝑓 , 2𝑣 − 2𝑢; −𝑟𝑓 , 1 − 2𝑣 + 𝑢) . (10) 

where 𝑝𝑠 is the price of the portfolio. 

I now search for the equilibrium price for this new portfolio. Two types of equilibrium 

may exist, depending on parameters. A homogeneous holdings equilibrium is an equilibrium 

in which all investors with access to the new portfolio hold the same position. In this 

equilibrium, each investor will hold an infinitesimal amount 𝜀∗  of the new portfolio. 

According to Barberis and Huang (2008), the expected excess return on this new portfolio 

should be zero, or more precisely, infinitesimally greater than zero.3 

𝐸(𝑟𝑠) = 𝑢 (𝐽
𝑝𝑠

− 𝑟𝑓) + (2𝑣 − 2𝑢)( 𝐽
2𝑝𝑠

− 𝑟𝑓) − (1 − 2𝑣 + 𝑢)𝑟𝑓 = 0 . (11) 

 

                                                 
3 See Proposition 2 in Barberis and Huang (2008) 
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𝑝𝑠 = 𝑣𝐽
𝑟𝑓

 . (12) 

Note that in a homogeneous holdings equilibrium, the price of the portfolio, 𝑝𝑠 , does not 

depend on 𝑢. 

The other type of equilibrium is a heterogenous holdings equilibrium with two groups of 

investors, where all investors in the first group hold a combination of the risk-free asset, the 

market portfolio, and the new portfolio; and all investors in the second group hold the risk-free 

asset and the market portfolio but takes no position in the new portfolio. Markets are cleared 

by assigning each investor to one of the optima. According to Barberis and Huang (2008), a 

heterogeneous holdings equilibrium should satisfy the following conditions: 

𝑉 (𝑟𝑚) = 𝑉 (𝑟𝑚 + 𝜙∗𝑟𝑠) = 0 , (13) 

𝑉 (𝑟𝑚 + 𝜙𝑟𝑠) < 0  𝑓𝑜𝑟  0 < 𝜙 ≠ 𝜙∗, (14) 

𝑉 (𝑟𝑠) < 0 , (15) 

where  

𝑉 (𝑟𝑚 + 𝜙𝑟𝑠) = − ∫ 𝑤 (𝑃𝜙(𝑟)) 𝑑𝑣(𝑟) + ∫ 𝑤 (1 − 𝑃𝜙(𝑟)) 𝑑𝑣(𝑟)
∞

0

0

−∞
 , (16) 

and  

𝑃𝜙(𝑟) = Pr(𝑟𝑚 + 𝜙𝑟𝑠 ≤ 𝑟) 
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= Pr (𝑟𝑠 = 𝐽
𝑝𝑠

− 𝑟𝑓) Pr (𝑟𝑚 ≤ 𝑟 − 𝜙(𝐽
𝑝𝑠

− 𝑟𝑓))

+ Pr (𝑟𝑠 = 𝐽
2𝑝𝑠

− 𝑟𝑓) Pr (𝑟𝑚 ≤ 𝑟 − 𝜙( 𝐽
2𝑝𝑠

− 𝑟𝑓))

+ 𝑃𝑟(𝑟𝑠 = −𝑟𝑓) Pr(𝑟𝑚 ≤ 𝑟 + 𝜙𝑟𝑓) 

   = 𝑢𝑁
⎝
⎜⎛

𝑟 − 𝜙 (𝐽
𝑝𝑠

− 𝑟𝑓) − 𝜇𝑚

𝜎𝑚 ⎠
⎟⎞ + 2(𝑣 − 𝑢)𝑁

⎝
⎜⎜⎛

𝑟 − 𝜙( 𝐽
2𝑝𝑠

− 𝑟𝑓) − 𝜇𝑚

𝜎𝑚 ⎠
⎟⎟⎞

+(1 − 2𝑣 + 𝑢)𝑁 (
𝑟 + 𝜙𝑟𝑓 − 𝜇𝑚

𝜎𝑚
) , (17)

 

Here, 𝜙∗  is the fraction of wealth allocated to the new portfolio relative to the fraction 

allocated to the market portfolio for investors from the first group, and 𝑁(. ) is the cumulative 

normal distribution function. In a heterogeneous holdings equilibrium, the price of the new 

portfolio, 𝑝𝑠, depends on not only the skewness from its holdings (𝑣), but also the probability 

that both skewed securities pay out “jackpots” at the same time (𝐶𝑜𝑀𝑎𝑥). 

2.3 An Example 

Now I search for the equilibrium price of the new portfolio for each possible 𝐶𝑜𝑀𝑎𝑥. To 

do this, I construct an explicit example under the same set of parameters adopted in Barberis 

and Huang (2008): (𝛼, 𝛽, 𝛾, 𝛿, 𝜆) = (0.88, 0.88, 0.65, 0.65, 2.25)  and (𝜎𝑚, 𝑟𝑓 , 𝐽, 𝑣) =

(0.15, 1.02, 10, 0.09). I start by a special case: when 𝐶𝑜𝑀𝑎𝑥 = 1 (i.e., 𝑢 = 𝑣), the portfolio 

is just another skewed asset identical to the two skewed securities in the economy. Therefore, 

the portfolio should be priced at 0.925, equals to the price of the two skewed securities from 

the first economy. At this price, the market with the new portfolio has a heterogenous holdings 
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equilibrium in which the two global optima are 𝜙 = 0 and 𝜙 = 0.085. No discount should 

be observed. 

As 𝐶𝑜𝑀𝑎𝑥 goes down, the skewness of the portfolio drops while the expected payoff of 

the portfolio remains the same. As investors only value the tails of their wealth distribution, 

the portfolio becomes less attractive and should be traded at a lower price. For example, when 

𝑢 = 0.08, a heterogenous holdings equilibrium can exist. Specifically, I find that the price level 

𝑝𝑠 = 0.922 satisfies conditions (13) - (15). Figure 1a provides a graphical illustration. For this 

value of 𝑝𝑠, the red line plots the value function 𝑉 (𝑟𝑚 + 𝜙𝑟𝑠) for a range of values of 𝜙, 

where 𝜙 is the amount allocated to the skewed portfolio relative to the amount allocated to 

the market portfolio. The two global optima are obtained at 𝜙 = 0 and 𝜙 = 0.088. Market is 

cleared by assigning each investor to one of the two global optima. Compared to the price of 

each individual skewed security in the first economy, the portfolio is traded at a discount: 

𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡 = 𝑝𝑠 − 𝑝𝑙
𝑝𝑙

= 0.922 − 0.925
0.925

= −0.32% . (18) 

[Figure 1 Here] 

The intuition of the heterogenous holdings equilibrium is as follows. When investors hold 

a small position in the new portfolio relative to their existing position in the market portfolio, 

their utility drops because the new portfolio has a negative expected return (𝐸(𝑟𝑠) = 𝑣𝐽 𝑝𝑠⁄ −

𝑟𝑓 = −4.39%). As the position on the new portfolio increases, investors’ wealth distribution 

starts to have a significant degree of skewness. This increases investors’ utility because they 

overweights small probabilities and value skewness. At a price level of 𝑝𝑠 = 0.922, the benefit 
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of adding skewness to investors’ wealth distribution offsets the negative excess return from 

holding the portfolio, producing both 𝜙 = 0 and 𝜙 = 0.088 as global optima. 

For these parameter values, there exists no homogeneous holdings equilibrium, in other 

words, no equilibrium in which all investors with access to the new portfolio hold the same 

position. To see this is the case, according to (12), in a homogeneous holdings equilibrium,  

𝑝𝑠 = 𝑣𝐽
𝑟𝑓

= 0.09 × 10
1.02

= 0.882 . (19) 

For this value of 𝑝𝑠, the blue line in Figure 1a plots the value function 𝑉 (𝑟𝑚 + 𝜙𝑟𝑠). The blue 

line clearly shows that 𝑝𝑠 = 0.882 does not support an equilibrium, because all investors 

would prefer a substantial positive position in the portfolio to an infinitesimal one, making it 

impossible to clear the market.  

However, when 𝐶𝑜𝑀𝑎𝑥  is small, a homogeneous holdings equilibrium can be 

constructed but a heterogeneous holdings equilibrium cannot. In Figure 1b, the blue line shows 

that, when 𝑢 = 0.01, 𝜙 = 𝜀∗ → 0 is not only a local optimum but also a global optimum. 

Therefore, all investors would prefer to hold an infinitesimal positive position, and the portfolio 

is traded at 𝑝𝑠 = 0.882, or in other words, 4.65% discount. 

The intuition for the homogenous holdings equilibrium is that, when 𝐶𝑜𝑀𝑎𝑥 is small, 

the new portfolio is not sufficiently skewed. Therefore, no position, however large, can add 

enough skewness to investors’ wealth distribution to compensate for the negative expected 

returns received from holding the portfolio. Since investors only overweight the right-tail of 
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the distribution, cumulative prospect theory assigns the portfolio the same expected return that 

a concave expected utility theory would do, i.e., 𝐸(𝑟𝑠) ൌ 0. 

With 𝑢 = 0.01, a heterogeneous holdings equilibrium is not feasible. Specifically, 𝑝𝑠 =

0.818 satisfies conditions (13). But the red line in Figure 1b shows that condition (14) is 

violated: the utility becomes positive for a small range of 𝜙 > 0. Therefore, all investors 

would prefer a positive position in the new portfolio, making it impossible to clear the market.  

For each value of 𝐶𝑜𝑀𝑎𝑥, I search the price for the portfolio that satisfy a heterogenous 

holdings equilibrium first, and if it does not exist, the price for a homogeneous holdings 

equilibrium. I plot the relation between 𝐶𝑜𝑀𝑎𝑥 and the portfolio discount in Figure 2.  

[Figure 2 Here] 

Figure 2 shows that, holding 𝑣 constant, the model predicts a negative relation between 

𝐶𝑜𝑀𝑎𝑥 and the portfolio discount. When 𝐶𝑜𝑀𝑎𝑥 = 1, the portfolio is priced equally as the 

individual skewed securities. As 𝐶𝑜𝑀𝑎𝑥 goes down, the skewness of the portfolio declines 

even though the expected payoff remains the same. This negatively affects the price of the 

portfolio because investors only overweight the right tails of their wealth distribution, making 

the portfolio trade at a discount relative to each individual skewed security. As 𝐶𝑜𝑀𝑎𝑥 drops 

below 0.40, the portfolio cannot offer enough skewness to support a heterogeneous holdings 

equilibrium, and cumulative prospect theory assigns a price 𝑝𝑠 < 𝑝𝑙 regardless of 𝐶𝑜𝑀𝑎𝑥. 

2.4 𝑣, 𝐶𝑜𝑀𝑎𝑥, and Portfolio Discount 
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In this section, I allow both 𝑣 and 𝐶𝑜𝑀𝑎𝑥 to vary and check how the portfolio discount 

is determined by both the “jackpot” probability and the tendency of paying off “jackpots” at 

the same time. 

Similar patterns from Section 2.3 can be obtained for other low values of 𝑣 as well. In 

Figure 3a, I plot the portfolio discount as a function of 𝐶𝑜𝑀𝑎𝑥 for 𝑣 = 0.09 (red line), 𝑣 =

0.07 (blue line), and 𝑣 = 0.05 (green line). In all three cases, a low 𝐶𝑜𝑀𝑎𝑥 leads to a high 

portfolio discount. Provided the same level of 𝐶𝑜𝑀𝑎𝑥, the discount on the portfolio is more 

sever when 𝑣 is low, i.e., when the portfolio holds securities with a high degree of skewness. 

On the other hand, when 𝑣 is high, the negative effect of 𝐶𝑜𝑀𝑎𝑥 on the portfolio price is 

smaller. An extreme case is that when 𝑣 is high enough (no lottery-like feature) so that only a 

homogenous holdings equilibrium exists, the portfolio price does not depend on 𝐶𝑜𝑀𝑎𝑥 at 

all. 

[Figure 3 Here] 

In Figure 3b, I plot the portfolio discount as a function of 𝑣 for 𝐶𝑜𝑀𝑎𝑥 = 1.0 (red line), 

𝐶𝑜𝑀𝑎𝑥 = 0.7  (blue line), 𝐶𝑜𝑀𝑎𝑥 = 0.4  (green line), and 𝐶𝑜𝑀𝑎𝑥 = 0.1  (purple line). 

When 𝐶𝑜𝑀𝑎𝑥 = 1.0 (no diversification), the portfolio is always traded at a price equals to 

the skewed securities regardless of 𝑣. In the other three cases, a low 𝑣 leads to a high portfolio 

discount. Provided the same level of 𝑣, the discount on the portfolio is more sever when 

𝐶𝑜𝑀𝑎𝑥 is small, i.e., when the two skewed securities do not tend to pay off “jackpots” at the 
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same time. On the other hand, if the two skewed securities have high 𝐶𝑜𝑀𝑎𝑥, the discount 

can be partially mitigated. 

Therefore, the model predicts an interaction effect: a portfolio pricing discount appears 

when the portfolio holds securities with a high degree of skewness (low 𝑣) but do not tend to 

pay off “jackpots” together (high 𝐶𝑜𝑀𝑎𝑥). 

 

3 Data and Variables 

In this section, I introduce samples and variables to test my model prediction: CEFs 

(Section 3.1), M&A (Section 3.2), and conglomerates (Section 3.3). 

3.1 Closed-end Funds 

The first set of empirical tests focuses on US equity closed-end funds.4 A CEF is a type 

of publicly traded mutual fund which invests in other publicly traded securities. The nature that 

a CEF itself is traded in a stock exchange makes it possible to compare the market value of the 

fund with the total market value of its underlying assets. 

Following the literature, I first extract a list of CEFs and their monthly prices from CRSP 

by selecting securities with share codes 14 and 44. The net asset value (NAV), i.e., the market 

value of a fund’s underlying assets on a per-share basis, can be accessed from Compustat. The 

                                                 
4 A CEF is defined as a US equity CEF if at least 50% of its weight is invested in stocks listed in US stock 

exchanges. 
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dependent variable is the CEF discount, which is defined as the difference between the price 

of a CEF and its NAV, divided by NAV: 

𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑖,𝑡 =
𝑃𝑟𝑖𝑐𝑒𝑖,𝑡 − 𝑁𝐴𝑉𝑖,𝑡

𝑁𝐴𝑉𝑖,𝑡
 . (22) 

For example, a CEF traded at $4.9 but with a NAV of $5 is described to have a premium of 

−2%. In other words, the CEF is traded at 2% discount. To avoid unnecessary confusion, I 

always describe results in terms of discounts, following the common convention and the fact 

that the majority of CEFs trade at discounts. To avoid distortions on the CEF discount after the 

initial public offering and shortly before a closed-end fund gets liquidated or becomes open-

ending, I follow Chan, Jain, and Xia (2008) to exclude data within the first six months after a 

fund’s IPO and in the month preceding the announcement of liquidation or open-ending.5 I 

obtain CEFs’ holdings from Morningstar. They are merged to CRSP by name and CUSIP.  

The degree of lottery likeness is proxied by the average top-five daily returns within a 

month (𝑀𝑎𝑥5), following Bali, Cakici, and Whitelaw (2011). Similar results can be obtained 

using top 1/2/3/4 daily returns within a month as well. I use 𝑀𝑎𝑥5 for the main results to 

allow for more variation in 𝐶𝑜𝑀𝑎𝑥. I denote 𝐶𝐸𝐹_𝑀𝑎𝑥5 as the 𝑀𝑎𝑥5 for a CEF, and 

𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥5  as the average 𝑀𝑎𝑥5  from a CEF’s holdings, weighted by holding 

percentage. Because both the holdings and the CEF itself can exhibit lottery-like features, I 

examine the relative degree of lottery likeness, 𝐸𝑥_𝑀𝑎𝑥5, which is define as: 

                                                 
5 This exclusion does not affect my results. 
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𝐸𝑥_𝑀𝑎𝑥5 = 𝐶𝐸𝐹_𝑀𝑎𝑥5 − 𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥5. (23) 

I produce a measure for 𝐶𝑜𝑀𝑎𝑥 based on the top-five daily returns within a month. 

Specifically, for every possible stock pairs within a CEF’s holdings, I check the percentage of 

the top-five daily returns that are recorded in the same day, and denote it as 𝐶𝑜𝑀𝑎𝑥5. For 

example, if the top-five daily returns for Stock A come from the 1st, 4th, 9th, 11th and 15th day 

of the month, while the top-five daily returns for stock B come from the 2nd, 4th, 9th, 14th and 

20th day of the month, then 𝐶𝑜𝑀𝑎𝑥5  equals 40% for this stock pair. By construction, 

𝐶𝑜𝑀𝑎𝑥5 ∈ [0,1]. For each pair of stocks, the average lottery likeness, 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5, is the 

average 𝑀𝑎𝑥5 of the two stocks, weighted by their respective holding percentages. 

𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 × 𝐶𝑜𝑀𝑎𝑥5 provides useful information about both the degree of lottery likeness 

and the tendency of paying out extreme returns together for each stock pair. 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 ×

𝐶𝑜𝑀𝑎𝑥5, 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 and 𝐶𝑜𝑀𝑎𝑥5 are further taken average across all possible stock 

pairs, weighted by the total holding percentage of each stock pair. I use the same notations for 

these aggregated variables. Note that after 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 is taken the weighted average across 

all stock pairs, it equals 𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥5. 

In my empirical tests, I focus on top-10 holdings from each CEF. The reasons are as 

follows. Firstly, the average CEF in my sample holds around a hundred stocks. It is impossible 

for investors to know the detailed holding list of each CEF. On the contrary, top10 holdings 

are readily observable from a fund’s website, factsheets, and financial medias (such as 

Morningstar, Yahoo! Finance, etc.) for retail investors, who are the primary investors on CEFs. 
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Second, top-10 holdings account for a substantial portion of the total portfolio value and 

represent the investment objectives of the fund. That being said, including all holding stocks 

produces qualitatively similar results. 

I consider the following control variables: disagreement, inverse price, dividend yield, 

expense ratio, liquidity ratio, excess skewness, and excess idiosyncratic volatility. Detailed 

descriptions of these variables can be found in the Appendix. My final sample contains 101 

CEFs from 2002 to 2014. The sample period is determined by the availability of Morningstar. 

Panel A of Table 1 reports summary statistics for the CEF sample. The average CEF 

discount is 4.7% with a standard deviation of 14.3%. The mean and standard deviation of the 

CEF discount is in line with those reported in prior studies (for example, Lee, Shleifer and 

Thaler, 1991; Chen, Kan, and Miller, 1993; Bodurtha, Kim, and Lee, 1995; Pontiff, 1996; 

Klibanoff, Lamont, and Wizman, 1998; Chan, Jain, and Xia, 2008; Hwang, 2011; Wu, 

Wermers, and Zechner, 2016; Hwang and Kim, 2017).  

[Table 1 Here] 

In Panel A of Table 2, I compare the lottery-like feature between a CEF and its holdings. 

The average 𝑀𝑎𝑥5 for a CEF is 0.9% lower than the average 𝑀𝑎𝑥5 for its holdings (t-

statistic = −34.44). In other words, the average lottery-like feature of underlying stocks drops 

about 41% in magnitude when they are combined and traded as a portfolio. This shows that 

lottery-like features indeed get diversified away at the fund level. 
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[Table 2 Here] 

3.2 Mergers and Acquisitions 

The second set of empirical tests focuses on M&A. I extract details on M&A deals from 

the Securities Data Corporation’s U.S. M&A database. Following Masulis, Wang, and Xie 

(2007), I require that: (1) the status of the deal must be completed; (2) the acquirer controls 

less than 50% of the target shares prior to the announcement; (3) the acquirer owns 100% of 

the target shares after the transaction; (4) the deal value disclosed in the SDC dataset is more 

than 1 million USD.  

I obtain stock returns and accounting variables from CRSP and Compustat, respectively. 

These two datasets are merged with the SDC data based on name and CUSIP. The dependent 

variable is the combined announcement return, defined as the average cumulative abnormal 

return over days [−1,+1]  across the acquirer and the target, weighted by their market 

capitalizations in the month prior to the announcement: 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝐶𝐴𝑅[−1,+1] = 𝑤𝐴 × 𝐶𝐴𝑅𝐴[−1,+1] + 𝑤𝑇 × 𝐶𝐴𝑅𝑇 [−1, +1], (20) 

where 𝑡 =  0 is the announcement day, or the ensuing trading day if the deal is announced 

when the market is closed. 𝐶𝐴𝑅𝐴[−1,+1] and 𝐶𝐴𝑅𝑇 [−1,+1] are cumulative abnormal 

returns over days [−1, +1] for the acquirer and the target, respectively; 𝑤𝐴  and 𝑤𝑇  are 

weights based on market capitalizations for the acquirer and the target. I use DGTW-adjusted 

returns (Daniel, Grinblatt, Titman, and Wermers, 1997) to compute 𝐶𝐴𝑅𝐴[−1,+1]  and 
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𝐶𝐴𝑅𝑇 [−1,+1]. 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝐶𝐴𝑅[−1,+1] captures the difference between the value of the 

joint firm (i.e., the “portfolio”) and the total value of the acquirer and the target operating 

separately (i.e., the “underlying assets”).  

The degree of lottery likeness of the acquirer (target) is proxied by the average of the 

acquirer’s (target’s) top-3 monthly returns within the past year before the announcement 

(𝑀𝑎𝑥3).6 This empirical strategy is in the same sprit as Bali, Cakici, and Whitelaw (2011). I 

use monthly returns over a year’s horizon because investors evaluate M&A deals in a long 

horizon.7 Yet I still use top 1/4 of the data to identify extreme payoffs.  𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥3, 

which captures the average degree of lottery likeness from a M&A deal, is the average lottery 

likeness from the acquirer (𝑀𝑎𝑥3𝐴) and the target (𝑀𝑎𝑥3𝑇 ), weighted by their respective 

market capitalizations (𝑤𝐴 and 𝑤𝑇 ) in the month prior to the announcement: 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥3 = 𝑤𝐴 × 𝑀𝑎𝑥3𝐴 + 𝑤𝑇 × 𝑀𝑎𝑥3𝑇 . (21) 

To capture the likelihood that both the acquirer and the target pay out extreme returns at 

the same time, I define 𝐶𝑜𝑀𝑎𝑥3 as the percentage of the top-3 monthly returns that are 

recorded in the same month. For example, if the top-3 monthly returns for Stock A come from 

month −10, −5 and −2, while the top-3 monthly returns for Stock B come from month −9, −5 

                                                 
6 Some existing studies also utilize monthly returns to capture the skewness of a return distribution, for instance, 

Mitton and Vorkink (2007), Barberis, Mukherjee, and Wang (2016). 

7 Similar results can be obtained using weekly or daily returns. 
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and −3 (the month that the deal is announced is month 0), then 𝐶𝑜𝑀𝑎𝑥3 equals 33% for this 

deal. By construction, 𝐶𝑜𝑀𝑎𝑥3 ∈ [0,1].  

I consider the following control variables for both acquirers and targets: market 

capitalization, market-to-book ratio, return on assets, leverage, and operating cash flows. I 

consider the following control variables from deals: disagreement, relative size, tender offer, 

hostile offer, competing offer, cash only, stock only, same industry, combined skewness, and 

combined idiosyncratic volatility. Detailed descriptions of these variables can be found in the 

Appendix. 

My final sample contains 1,145 M&A deals from 1989 to 2014. Summary statistics are 

reported in Panel B of Table 1. The average 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥3 is 1.6% with a standard 

deviation of 7.0%. I compare the lottery-like feature of acquirers and targets in Panel B of 

Table 2. On average, 𝑀𝑎𝑥3𝑇  is 4.2% higher than 𝑀𝑎𝑥3𝐴 (t-statistic = 11.63).  

3.3 Conglomerates 

The last set of tests focuses on conglomerates. A conglomerate is a firm operating in 

multiple industry segments. My data on firm segments is from Compustat, in which each 

segment is assigned a four-digit SIC code. I define a conglomerate as a firm operating across 

at least two different segments; I define a single-segment firm as a firm operating in only one 

segment. Following the standard literature (Berger and Ofek, 1995; Lamont and Polk, 2001; 

Mitton and Vorkink, 2010), I discard firm-year observations if Compustat assigns any segment 

a 1-digit SIC code of 0 (Agriculture, Forestry and Fishing), 6 (Finance, Insurance and Real 
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Estate), or 9 (Public Administration & Non-classifiable). I also drop firm-year observations 

that meet any of the following conditions: (1) total sales or total assets or book value of equity 

of the firm is missing or non-positive; (2) net sales from any of the segments is missing or non-

positive; (3) the sum of sales from all segments is not within one percent of the total sales of 

the firm; and (4) total sales of the firm is less than 20 million USD.  

After screening out defective observations, I match the rest of the data to CRSP. More 

specifically, I match book value from fiscal year 𝑡 − 1 to market value from June of calendar 

year 𝑡, and compute market-to-book ratios for both conglomerates and single-segment firms. 

The market-to-book ratio for a segment (𝑆𝑒𝑔_𝑀𝐸𝐵𝐸) is defined as the sales-weighted average 

market-to-book ratios across all single-segment firms within the segment. The imputed market-

to-book ratio ( 𝐼𝑚𝑝𝑢𝑡𝑒𝑑_𝑀𝐸𝐵𝐸 ) is defined as the average 𝑆𝑒𝑔_𝑀𝐸𝐵𝐸  across a 

conglomerate’s segments, weighted by this conglomerate’s net sales from each segment. The 

conglomerate discount is defined as the difference between a conglomerate’s market-to-book 

ratio (𝑀𝐸𝐵𝐸) and its 𝐼𝑚𝑝𝑢𝑡𝑒𝑑_𝑀𝐸𝐵𝐸, scaled by 𝐼𝑚𝑝𝑢𝑡𝑒𝑑_𝑀𝐸𝐵𝐸: 

𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑖,𝑡 =
𝑀𝐸𝐵𝐸𝑖,𝑡 − 𝐼𝑚𝑝𝑢𝑡𝑒𝑑_𝑀𝐸𝐵𝐸𝑖,𝑡

𝐼𝑚𝑝𝑢𝑡𝑒𝑑_𝑀𝐸𝐵𝐸𝑖,𝑡
 . (24) 

I winsorize this variable at the 1st and 99th percentiles. To avoid unnecessary confusion, I 

always describe the results in terms of discounts, following the common convention and the 

fact that the majority of conglomerates trade at discounts. This variable captures the difference 

between the market value of a conglomerate (i.e., the “portfolio”) and the overall market value 

of the segments related to this conglomerate (i.e., the “underlying assets”). 
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Same as the M&A setting, the lottery-like feature for a firm is proxied by the average top-

3 monthly returns within the fiscal year (𝑀𝑎𝑥3). To proxy for the lottery likeness of a segment, 

I conjecture that, when investors evaluate the lottery-like feature of a segment, they focus on 

the ones similar to the conglomerate. Therefore, five single-segment firms are selected from 

each segment based on the closeness of SIC code first and then net sales.8 The lottery-likeness 

for each segment (𝑆𝑒𝑔_𝑀𝑎𝑥3) is then defined as the sales-weighted average 𝑀𝑎𝑥3 across 

these five single-segment firms. 𝐼𝑚𝑝𝑢𝑡𝑒𝑑_𝑀𝑎𝑥3  is defined as the average 𝑆𝑒𝑔_𝑀𝑎𝑥3 

across a conglomerate’s segments, weighted by this conglomerate’s net sales from each 

segment. The relative lottery-likeness is defined as the difference between a conglomerate’s 

𝑀𝑎𝑥3 (𝐶𝑜𝑛𝑔_𝑀𝑎𝑥3) and its 𝐼𝑚𝑝𝑢𝑡𝑒𝑑_𝑀𝑎𝑥3: 

𝐸𝑥_𝑀𝑎𝑥3 =  𝐶𝑜𝑛𝑔_𝑀𝑎𝑥3 –  𝐼𝑚𝑝𝑢𝑡𝑒𝑑_𝑀𝑎𝑥3 . (25) 

Trying to capture the tendency of two segments paying out extreme returns together is 

difficult. To the best of my knowledge, the previous literature provides little guidance on this 

attempt.9 To have a similar proxy as the ones adopted in the previous two settings, I construct 

a 𝐶𝑜𝑀𝑎𝑥3 measure for all possible stock pairs from any two different segments. For example, 

consider a conglomerate which operates in three segments, A, B, and C. This conglomerate has 

three segment pairs: (A, B), (A, C), and (B, C). Given segment pair (A, B), I choose one of the 

                                                 
8 If fewer than 5 single-segment firms match at the 4-digit SIC level, I proceed to the 3-digit SIC level, and to the 

2-digit SIC level if necessary, until at least 5 single-segment matches are found. If less than 5 matches are found 

at the 2-digit SIC level, the observation is excluded. 

9 The most obvious choice, which is using value-weighted average returns from each segment, does not serve the 

purpose here. Aggregating returns at segment level diversifies away lottery-like features.  
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five single-segment firms from Segment A, and one of the five single-segment firms from 

Segment B. This exercise leaves me 25 (5×5) stock pairs. I count the percentage of top-3 

monthly returns that are recorded in the same month for each stock pair, and I take sales-

weighted average across 25 pairs (𝑆𝑒𝑔_𝐶𝑜𝑀𝑎𝑥) as a proxy for 𝐶𝑜𝑀𝑎𝑥 between Segment A 

and Segment B. I repeat the exercise for the other two segment pairs. Finally, I take the average 

𝑆𝑒𝑔_𝐶𝑜𝑀𝑎𝑥 of these three segment pairs, weighted by this conglomerate’s net sales from 

each segment pairs. 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥3 (sales-weighted average 𝑀𝑎𝑥3 from the two stocks in the 

pair) and 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥3 × 𝐶𝑜𝑀𝑎𝑥3 are constructed in the same procedure. Note that, after 

taken weighted average across stock pairs and segment pairs, 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥3  becomes 

𝐼𝑚𝑝𝑢𝑡𝑒𝑑_𝑀𝑎𝑥3. This method is enlightened by Green and Hwang (2012), who pool returns 

from all stocks in each of the FF-30 industries to compute that industry’s skewness. My method 

is similar in spirit, as I pool a collection of individual stock returns to capture lottery-like 

features and 𝐶𝑜𝑀𝑎𝑥 for segments. 

Control variables for this setting include: disagreement, total assets, leverage, profitability, 

investment ratio, excess skewness, and idiosyncratic volatility. Detailed descriptions of these 

variables can be found in the Appendix.  

As reported in Panel C of Table 1, my final sample contains 15,907 firm-year observations 

from 1977 to 2014. The average conglomerate discount in my sample is 13.0%, which is in 

line with the figures reported in prior literature (Berger and Ofek, 1995; Lamont and Polk, 2001, 

Mitton and Vorkink, 2010). Panel C of Table 2 compares lottery-like features between 
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conglomerates and single-segment firms. The average 𝑀𝑎𝑥3 from a conglomerate is 1.9% 

lower than the average 𝑀𝑎𝑥3 from its comparable single-segment firms (t-statistic = −32.08). 

 

4 Main Results 

In this section, I document three sets of empirical evidence supporting my model 

prediction in Section 2: CEFs (Section 4.1), M&A (Section 4.2), and conglomerates (Section 

4.3). I conduct placebo tests in Section 4.4 to show that my results are indeed driven by 

𝐶𝑜𝑀𝑎𝑥.  

4.1 Closed-end Funds 

My first set of tests focuses on CEFs. I estimate pooled OLS regressions with fixed effects 

and with standard errors clustered along both fund and time dimensions. The dependent 

variable is the CEF discount (in percentage). It captures the difference between the market 

value of the fund and the market value of its holdings. The independent variables of interests 

are 𝐸𝑥_𝑀𝑎𝑥5 and 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 × 𝐶𝑜𝑀𝑎𝑥5.  

Control variables include disagreement, inverse CEF price, dividend yield, liquidity ratio, 

expense ratio, excess skewness, and excess idiosyncratic volatility. Detailed descriptions of 

control variables can be found in the Appendix. Hwang (2011) argues that inverse price and 

dividend yield have differential predictions on the CEF discount depending on whether the 

fund trades at a discount or at a premium. Therefore, I follow his paper and separate inverse 

price into two variables: 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑃𝑟𝑖𝑐𝑒[𝑝𝑜𝑠], which equals to the inverse price if the fund 



29 
 

trades at a premium, and zero otherwise; and 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑃𝑟𝑖𝑐𝑒[𝑛𝑒𝑔], which equals to the inverse 

price if the fund trades at a discount and zero otherwise. 𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑 𝑌𝑖𝑒𝑙𝑑[𝑝𝑜𝑠]  and 

𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑 𝑌𝑖𝑒𝑙𝑑[𝑛𝑒𝑔]  are defined in a similar fashion. All independent variables are 

standardized to have a mean zero and a standard deviation of one. The results are reported in 

Table 3. 

[Table 3 Here] 

I first test the relation between 𝐸𝑥_𝑀𝑎𝑥5 and the CEF discount. Since diversification is 

inevitable (𝐶𝑜𝑀𝑎𝑥 < 1) in reality when selecting stocks into a CEF, my model predicts that a 

low 𝐸𝑥_𝑀𝑎𝑥5 (i.e., strong lottery-like feature from a CEF’s holdings relative to the CEF 

itself) is associated with a high CEF discount.  

The first three columns in Table 3 confirm this prediction. For example, in Column 3, 

after controlling for other variables related to the CEF discount, fund and time fixed effects, a 

one-standard-deviation decrease in 𝐸𝑥_𝑀𝑎𝑥5 is associated with 1.0% increase in the CEF 

discount (t-statistic = 2.81). For reference, the median CEF discount in my sample is 9.0%. 

Therefore, the effect on 𝐸𝑥_𝑀𝑎𝑥5 is both statistically and economically strong. 

Next, I include 𝐶𝑜𝑀𝑎𝑥5 and 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 × 𝐶𝑜𝑀𝑎𝑥5 into the analysis. As described 

in Section 3.1, for every possible stock pairs within a CEF’s top-10 holdings, 𝐶𝑜𝑀𝑎𝑥5 

captures the percentage of the top 5 daily returns that are recorded in the same day for a stock 

pair, and 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 captures the average degree of lottery likeness from a stock pair. Thus, 

𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 × 𝐶𝑜𝑀𝑎𝑥5 provides useful information on both the degree of lottery likeness 
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and the tendency that a CEF’s holdings pay out extreme returns together. Then I take average 

𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 × 𝐶𝑜𝑀𝑎𝑥5 , 𝐶𝑜𝑀𝑎𝑥5 , and 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 across all stock pairs in a CEF, 

weighted by the total holding percentages of stock pairs. After taken weighted average, 

𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 becomes 𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥5. Therefore, I split 𝐸𝑥_𝑀𝑎𝑥5 into 𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥5 

and 𝐶𝐸𝐹_𝑀𝑎𝑥5  in these regressions. My model predicts a positive relation between 

𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 × 𝐶𝑜𝑀𝑎𝑥5 and the CEF discount. 

Columns 5-7 confirm my results. Column 7 shows that a one-standard-deviation increase 

in 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 × 𝐶𝑜𝑀𝑎𝑥5 can offset the diversification effect by 0.5% (t-statistic = 2.92). 

4.2 M&A 

I make analogous observations for M&A deals. I estimate a pooled OLS regression with 

time-fixed effects and with standard errors clustered by time across 1,145 M&A events that 

meet data requirements. The dependent variable is the combined announcement-day return 

(𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝐶𝐴𝑅 [−1, +1]) (in percentage), where 𝑡 =  0 is the announcement day, or the 

ensuing trading day if the deal is announced when the market is closed. It captures the 

difference between the market value of the joint firm (i.e., the “portfolio”) and the total market 

value of the acquirer and the target operating separately (i.e., the “underlying assets”). The 

independent variables of interests are 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥3 and 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥3 × 𝐶𝑜𝑀𝑎𝑥3. 

I control characteristics from acquirers, targets and deals. Detailed description for all control 

variables can be found in the Appendix. All variables are standardized to have a mean of zero 

and a standard deviation of one. Results are reported in Table 4. 
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[Table 4 Here] 

Table 4 shows that 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥3 negatively predicts 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝐶𝐴𝑅 [−1,+1]. 

In Column 2, a one-standard-deviation increase in 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥3  comes with 1.3% 

decrease on 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝐶𝐴𝑅 [−1,+1]  (t-statistic=−2.24). In my sample, the median 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝐶𝐴𝑅 [−1,+1] is about 1.0%, therefore this effect is both statistically significant 

and economically large. This result is consistent with my model prediction. Since 

diversification is inevitable (𝐶𝑜𝑀𝑎𝑥 < 1) in reality when conducting a M&A deal, strong 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥3 should negatively affect 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝐶𝐴𝑅 [−1,+1] unconditionally. 

 Next, I include 𝐶𝑜𝑀𝑎𝑥3  and 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥3 × 𝐶𝑜𝑀𝑎𝑥3  into the analysis. As 

described in Section 3.2, 𝐶𝑜𝑀𝑎𝑥3 captures the percentage of the top-3 monthly returns that 

are recorded in the same month. Thus, 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥3 × 𝐶𝑜𝑀𝑎𝑥3  provides useful 

information on both the degree of lottery likeness and the tendency that both the acquirer and 

the target pay out extreme returns together. My model predicts a positive relation between 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥3 × 𝐶𝑜𝑀𝑎𝑥3 and 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝐶𝐴𝑅 [−1,+1]. 

This prediction is confirmed in Columns 3 & 4. In Column 4, a one-standard-deviation 

increase in 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥3 × 𝐶𝑜𝑀𝑎𝑥3 can help offset the diversification effect by 0.7% 

(t-statistic = 4.00). 

4.3 Conglomerate Firms 
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As an additional test, I check whether my model can help explain the conglomerate 

discount. Similar to the other two settings, I estimate pooled OLS regressions with time fixed 

effects and standard errors clustered by firm and time. The dependent variable is the 

conglomerate discount (not in percentage this time). This variable captures the difference 

between the market value of a conglomerate (i.e., the “portfolio”) and the average market value 

of the segments associated with the conglomerate’s business (i.e., the “underlying assets”). The 

independent variables of interests are 𝐸𝑥_𝑀𝑎𝑥3 and 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥3 × 𝐶𝑜𝑀𝑎𝑥3.  

Control variables include: disagreement, log total assets, the square of log total assets, 

leverage, profitability, investment ratio, excess skewness, and excess idiosyncratic volatility. 

Detailed descriptions of control variables can be found in the Appendix. All independent 

variables are standardized to have a mean of zero and a standard deviation of one. Regression 

results are reported in Table 5. 

[Table 5 Here] 

I first test the relation between 𝐸𝑥_𝑀𝑎𝑥3  and the conglomerate discount. Since 

diversification is inevitable in reality (𝐶𝑜𝑀𝑎𝑥 < 1 ) when a conglomerate expands into 

multiple segments, my model predicts that a low 𝐸𝑥_𝑀𝑎𝑥3 (i.e., strong lottery-like segments 

relative to the conglomerate itself) is associated with a high conglomerate discount.  

The first two columns in Table 5 confirm this prediction. In Column 2, after controlling 

for other variables related to conglomerate discount and time fixed effects, a one-standard-

deviation decrease in 𝐸𝑥_𝑀𝑎𝑥3  is associated with 19.5% increase in the conglomerate 
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discount (t-statistic = 7.50). For reference, the median conglomerate discount in my sample is 

29.2%. Therefore, the effect on 𝐸𝑥_𝑀𝑎𝑥3 is both statistically and economically strong. 

Next, I include 𝐶𝑜𝑀𝑎𝑥3 and 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥3 × 𝐶𝑜𝑀𝑎𝑥3 into the analysis. As described 

in Section 3.3, 𝐶𝑜𝑀𝑎𝑥3  captures the percentage of the top-3 monthly returns that are 

recorded in the same month for a pair of stocks from two different segments, and 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥3 

captures the average degree of lottery likeness from the stock pair. Thus, 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥3 ×

𝐶𝑜𝑀𝑎𝑥3 provides useful information on both the degree of lottery likeness and the tendency 

that these two stocks pay out extreme returns together. I take weighted average for 

𝑃𝑎𝑖𝑟_𝑀𝑎𝑥3 × 𝐶𝑜𝑀𝑎𝑥3, 𝐶𝑜𝑀𝑎𝑥3, and 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥3 across all stock pairs and segment pairs 

to produce a measure for the conglomerate. After taken weighted average across stock pairs 

and segment pairs, 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥3  becomes 𝐼𝑚𝑝𝑢𝑡𝑒𝑑_𝑀𝑎𝑥3 . Therefore, I split 𝐸𝑥_𝑀𝑎𝑥3 

into 𝐼𝑚𝑝𝑢𝑡𝑒𝑑_𝑀𝑎𝑥3 and 𝐶𝑜𝑛𝑔_𝑀𝑎𝑥3 in these regressions. My model predicts a positive 

relation between 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥3 × 𝐶𝑜𝑀𝑎𝑥3 and the conglomerate discount. 

Columns 3-5 confirm my results. Column 5 shows that, a one-standard-deviation increase 

in 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥3 × 𝐶𝑜𝑀𝑎𝑥3 can offset the diversification effect by 7.4% (t-statistic = 3.08). 

4.4 Placebo Tests 

A potential concern for the results documented in Sections 4.1-4.3 is that whether 

𝐶𝑜𝑀𝑎𝑥 simply captures return correlation. It is a fair challenge because 𝐶𝑜𝑀𝑎𝑥 and return 

correlation are mechanically correlated. To address this concern, I conduct three placebo tests 
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(one for each setting), replacing 𝐶𝑜𝑀𝑎𝑥 with return correlation constructed after excluding 

the extreme returns that are recorded at the same time. 

Take the CEF setting as an example. For each stock pair from a CEF’s top-10 holdings, I 

retrieve the daily return series for both stocks during the month, and exclude any of the top 5 

returns that are recorded in the same day. For example, if the top 5 daily returns for Stock A 

come from the 1st, 4th, 9th, 11th, and 15th day of the month, while the top 5 daily returns for stock 

B come from the 2nd, 4th, 9th, 14th, and 20th day of the month, then daily returns for Stock A and 

B on the 4th & 9th day of the month are excluded. Then, I calculate the return correlation 

between the two stocks using the rest of the daily returns and denote this correlation as 

𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟. I compute 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟 and 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 × 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟 for all 

possible top-ten stock pairs and take weighted average for a CEF. I replace 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟 

with 𝐶𝑜𝑀𝑎𝑥5, replace 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 × 𝐶𝑜𝑀𝑎𝑥5 with 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 × 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟, and 

reconduct the regressions in Columns 5-7 of Table 3. I report these results in Panel A of Table 

6. The interaction term 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 × 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟 becomes insignificant in all three 

columns. 

[Table 6 Here] 

For the M&A sample, I first retrieve the monthly return series from the past year for both 

the acquire and the target, and then exclude any of the top-3 monthly returns that are recorded 

in the same month. For example, if the top-3 monthly returns for Stock A come from month 

−10, month −5, and month −2 (the month that the deal is announced is month 0), while the top-
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3 monthly returns for Stock B come from month −9, month −5, and month −3, then the monthly 

returns for Stock A and B on month −5 are excluded. I calculate the return correlation between 

the acquirer and the target using the rest of the monthly returns, and denote this correlation as 

𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟. I replace 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟 with 𝐶𝑜𝑀𝑎𝑥3, replace 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥3 ×

𝐶𝑜𝑀𝑎𝑥3  with 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥3 × 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟 , and reconduct the regressions in 

Columns 3&4 of Table 4. I report these results in Panel B of Table 6. The interaction term 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥3 × 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟 becomes insignificant in both columns. 

Finally, I exploit the setting of conglomerates. For each of the two stocks from two 

different segments, I retrieve the monthly return series within the fiscal year for both stocks 

and exclude any of the top-3 monthly returns that are recorded in the same month. I calculate 

the return correlation between the two stocks using the rest of the monthly returns, and denote 

this correlation as 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟 . I compute 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟  and 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥3 ×

𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟 for every two stocks from two different segments, and take weighted average 

across all stock pairs and segment pairs, as described before. I replace 𝐶𝑜𝑀𝑎𝑥3  with 

𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟 , replace 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥3 × 𝐶𝑜𝑀𝑎𝑥3  with 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥3 × 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟 , 

and reconduct the regressions in Columns 4&5 of Table 5. I report these results in Panel C of 

Table 6. The results previously documented in Table 5 disappear. 

These three tests all show that return correlations during non-𝐶𝑜𝑀𝑎𝑥 period cannot 

explain CEF discounts, M&A announcement returns, or conglomerate discounts, and 𝐶𝑜𝑀𝑎𝑥 

is the real driving force for the results documented in Sections 4.1-4.3.  
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5 Further Discussion 

Since the diversification in lottery-like features can have a negative effect on CEF prices 

and M&A announcement returns, it is natural to consider if managers are aware of this situation 

and have managed to mitigate the effects. This section tries to shed some lights on these two 

questions.10 

5.1 Likelihood of Selection at CEF Inception 

If fund managers are aware that the diversification in lottery-like features have a negative 

effect on CEF prices, they should avoid selecting stocks with strong lottery-like features. To 

test this conjecture, I check CEF holdings at fund inception.11 For each of the top-10 stocks at 

inception, I identify 10 pseudo stocks that are not selected but are very similar to the actual 

holding. Specifically, I apply propensity score matching based on firm size, book-to-market 

ratio and past twelve months’ return and select the 10 pseudo stocks that are closest to the 

actual holding in terms of propensity scores. I end up with 45 actual top-10 stock pairs and 

4,500 pseudo pairs for each fund at inception. I estimate pooled logit regressions, where the 

dependent variable equals one if the stock pair consists of actual top-10 holdings, and zero 

otherwise. The independent variables of interests include 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 , 𝐶𝑜𝑀𝑎𝑥5 , and 

                                                 
10 Due to data limitations, I cannot conduct this exercise on conglomerates. 

11 Since holdings at the moment of IPO is not available, I take the first holding report shortly after a fund’s 

inception as its holding position at inception. This should not be a big issue because a CEF’s holdings are generally 

very persistent over time. 
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𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 × 𝐶𝑜𝑀𝑎𝑥5. I control for the average market capitalization, the average book-to-

market ratio, and the average past twelve months’ return for each stock pair. Results are 

reported in Panel A of Table 7. 

[Table 7 Here] 

Column 1 from Panel A of Table 7 shows that CEF managers tend to avoid stock pairs 

with strong lottery-like features.12 The estimate on 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 is −0.239 (z-statistic = −6.83). 

This indicates that increasing 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 by one-standard deviation lowers the likelihood of 

the pair being included at the inception by 18.6% relative to the unconditional likelihood.13  

Column 2 includes 𝐶𝑜𝑀𝑎𝑥5  and 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5 × 𝐶𝑜𝑀𝑎𝑥5  in the regression. The 

estimate on 𝐶𝑜𝑀𝑎𝑥5 is −0.249 (z-statistic = −3.83). This indicates that increasing 𝐶𝑜𝑀𝑎𝑥5 

by one-standard deviation makes the pair 30.0% more likely to be included at the inception 

relative to the unconditional likelihood. The interaction term is not significant, which is not 

surprising considering that CEF managers tend to avoid strong lottery-like stocks. 

5.2 Likelihood of M&A Deals 

Similar exercises can be conducted in the M&A setting as well. If firm managers are aware 

that the diversification in lottery-like features have a negative effect on M&A announcement 

                                                 
12 Similar results can also be obtained if the regression is conducted at stock level instead of pair level. 

13 This unconditional likelihood is 45/(45 × 10 × 10 + 45) = 0.0099. 
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returns, acquirers (targets) with a strong lottery-like feature should merge with targets 

(acquirers) which have a strong lottery-like feature and also a high 𝐶𝑜𝑀𝑎𝑥. 

I conduct three tests based on propensity score matching to explore this prediction. In 

Columns 1 and 2 of Panel B Table 7, I match each acquirer with ten pseudo targets that are not 

involved in the M&A deal with this acquirer. Pseudo targets are determined through propensity 

score matching with reference to the same set of target characteristics and relative size to the 

acquirer as outlined in the Section 3.1. These pseudo targets are the closest to the actual target 

based on their propensity scores. I divide my sample based on 𝑀𝑎𝑥3𝐴 terciles. Acquirers 

with 𝑀𝑎𝑥3𝐴 in the top tercile are considered with strong lottery-like features, while acquirers 

with 𝑀𝑎𝑥3𝐴 in the bottom tercile are considered non-lottery-like. I pool these pseudo M&A 

pairs with real M&A pairs together and run logit regressions, where the dependent variable 

equals one for actual M&A pairs, and zero otherwise. The independent variables of interests 

are 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥3, 𝐶𝑜𝑀𝑎𝑥3, and 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥3 × 𝐶𝑜𝑀𝑎𝑥3. I control the same set 

of firm characteristics as before. Detailed descriptions of all independent variables can be found 

in Appendix. 

Column 1 reports regression results based on the subsample of non-lottery-like acquirers 

(low 𝑀𝑎𝑥3𝐴 ). In this subsample, none of the independent variables of interests have 

significant effects on the likelihood of a M&A deal. On the contrary, Column 2 shows that 

when acquirers have strong lottery-like features (high 𝑀𝑎𝑥3𝐴 ), the estimate on 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥3 × 𝐶𝑜𝑀𝑎𝑥3  is 0.288 (z-statistic = 2.48). This indicates that increasing 



39 
 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥3 × 𝐶𝑜𝑀𝑎𝑥3 by one-standard deviation makes the two firms 29.2% more 

likely to announce an M&A deal relative to the unconditional likelihood.14 

I can conduct similar analysis by matching each target with ten pseudo acquirers that are 

not involved in the M&A deal with this target. Pseudo acquirers are determined through 

propensity score matching with reference to the same set of acquirer characteristics and relative 

size to the target as outlined in the Section 3.1. These pseudo acquirers are the closest to the 

actual acquirer based on their propensity scores. I divide my sample based on 𝑀𝑎𝑥3𝑇  terciles. 

Targets with 𝑀𝑎𝑥3𝑇  in the top tercile are considered with strong lottery-like features, while 

targets with 𝑀𝑎𝑥3𝑇  in the bottom tercile are considered non-lottery-like. I pool these pseudo 

M&A pairs with real M&A pairs together and run the same logit regressions and report the 

results in Columns 3 and 4 of Panel B Table 7. 

Column 3 reports regression results based on the subsample of non-lottery-like targets 

(low 𝑀𝑎𝑥3𝑇 ). Similar to Column 1, in this subsample, none of the independent variables of 

interests have significant effects on the likelihood of a M&A deal. On the contrary, Column 4 

shows that when targets have strong lottery-like features (high 𝑀𝑎𝑥3𝑇 ), the estimate on 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥3 × 𝐶𝑜𝑀𝑎𝑥3  is 0.183 (z-statistic = 2.38). This indicates that increasing 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥3 × 𝐶𝑜𝑀𝑎𝑥3 by one-standard deviation makes the two firms 20.8% more 

likely to announce an M&A deal relative to the unconditional likelihood. 

                                                 
14 This unconditional likelihood is 1/(10 + 1) = 0.091 for the first four columns. 
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As a final exercise, I allow both pseudo acquires and pseudo targets for each real M&A 

deal. This method provides me a total of 121 stock pairs (11×11) from each deal. I pool these 

pseudo M&A pairs with real M&A pairs together and run the same logit regressions and report 

the result in Columns 5. The result suggests that lottery-likeness and 𝐶𝑜𝑀𝑎𝑥 jointly affect 

the likelihood of a M&A deal. The estimate on 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥3 × 𝐶𝑜𝑀𝑎𝑥3 is 0.166 (z-

statistic = 2.08). This indicates that increasing 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥3 × 𝐶𝑜𝑀𝑎𝑥3  by one-

standard deviation makes the pair 22.0% more likely to announce an M&A deal relative to the 

unconditional likelihood.15 

To sum up, results from Table 7 indicate that mangers are aware that the diversification 

of lottery-like features have a negative effect on CEF prices and M&A announcement returns, 

and they have taken actions to mitigate the effects. Provided everything else equal, CEF 

managers tend to avoid lottery-like stocks at fund inception, while acquirers (targets) with 

strong lottery-like features tend to select targets (acquires) with strong lottery-like features and 

high 𝐶𝑜𝑀𝑎𝑥. These results provide further support for my main results from Section 4, and 

provide managerial implications for the effect of diversification in lottery-like features. 

 

6 Conclusion 

                                                 
15 This unconditional likelihood is 1/(11 × 11) = 0.008. 
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In this paper, I extend the model of Barberis and Huang (2008) and consider multiple 

lottery-like stocks. These lottery-like stocks can provide extreme positive payoffs with a small 

probability, but they may or may not produce extreme payoffs at the same time. I solve and 

compare asset prices in two economies. In the first economy, investors can trade these lottery-

like stocks freely. In the second economy, investors can only trade a portfolio consisting of 

these lottery-like stocks. I find that the portfolio price in the second economy is lower than the 

prices of these lottery-like stocks in the first economy. More importantly, this discount depends 

on how likely these lottery-like stocks produce extreme payoffs together. Specifically, when 

the stocks are more likely to produce extreme payoffs together, the portfolio pricing discount 

is smaller. 

I utilize closed-end funds (CEF), mergers and acquisitions (M&A), and conglomerates to 

test this prediction and find consistent results from all three settings. Firstly, in all three settings, 

the lottery-like feature indeed gets diversified away when stocks are combined into the 

“portfolio”. Secondly, the diversification in lottery-like features can help explain the CEF 

discount, the combined announcement-day return of a M&A deal, and conglomerate discount. 

Finally, when stocks are more likely to produce extreme payoffs together, these three discount 

pricing phenomena can get partially offset. My empirical evidence not only supports prospect 

theory from a new perspective, but also provides a novel and unifying explanation on the CEF 

puzzle, the M&A announcement return, and the conglomerate discount. 
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My paper also has managerial implications. A CEF manager may be better off by avoiding 

lottery-like stocks at fund inception. When evaluating potential M&A deals, a CEO should take 

advantage of the lottery-like feature of the firm by finding a lottery-like counterpart with 

high  𝐶𝑜𝑀𝑎𝑥 . Finally, it may be beneficial in terms of valuation for a conglomerate to 

unbundle its giant empire into smaller firms with more focused business.  
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Appendix. Variable Definitions 

A1. Closed-end Funds 

Disagreement: The portfolio-weighted average price-scaled earnings forecast dispersion of 

the top-10 stocks held by the CEF.  

Inverse Price: The inverse of the CEF’s market price.  

Dividend Yield: The sum of the dividends paid by the CEF over the past one year, divided by 

the CEF’s market price.  

Liquidity Ratio: The CEF’s one-month turnover, divided by the portfolio-weighted average 

one-month turnover of the stocks held by the CEF. If the stock is listed on NASDAQ, I divide 

the number of shares traded by two.  

Expense Ratio: The expense ratio of the CEF. 

Excess Skewness: The difference between the return skewness of the CEF and the portfolio-

weighted average return skewness of the stocks held by the CEF. Return skewness is calculated 

as 𝑠 =  (1/22) × ∑𝑡 (𝑟𝑡  − 𝜇)3 / 𝜎3 , where 𝑠 is calculated using daily returns over a 

one-month window, 𝜇 is the mean return, and 𝜎 is the standard deviation of returns. 

Excess Idiosyncratic Volatility: The difference between the idiosyncratic volatility of the 

CEF and the portfolio-weighted average idiosyncratic volatility of the stocks held by the CEF. 
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Idiosyncratic volatility is estimated based on residuals from Fama-French 3-factor model over 

a one-month window using daily returns.  

 A2. Mergers and Acquisitions 

Disagreement: The average price-scaled earnings forecast dispersion across the acquirer and 

the target, weighted by the acquirer’s and target’s market capitalization in the month prior to 

the announcement.  

Acquirer (Target) Market Capitalization: The acquirer’s (target’s) market capitalization in 

the month prior to the announcement.  

Acquirer (Target) Market-to-Book Ratio: The acquirer’s (target’s) market-to-book ratio.  

Acquirer (Target) ROA: The acquirer’s (target’s) earnings before interest and tax over total 

assets.  

Acquirer (Target) Leverage: The acquirer’s (target’s) long-term debt over total assets. 

Acquirer (Target) Operating Cash Flow: The acquirer’s (target’s) operating cash flows over 

total assets.  

Relative Size: The market capitalization of the acquirer over the sum of market capitalization 

from the acquirer and the target. 

Tender Offer: A dummy variable that equals one if a tender offer is made, and zero otherwise.  
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Hostile Offer: A dummy variable that equals one if the takeover is considered hostile, and zero 

otherwise.  

Competing Offer: A dummy variable that equals one if there are multiple offers made by 

various companies, and zero otherwise.  

Cash Only: A dummy variable that equals one if the acquirer only uses cash to purchase the 

target, and zero otherwise.  

Stock Only: A dummy variable that equals one if the acquirer only uses stocks to purchase the 

target, and zero otherwise.  

Same Industry: A dummy variable that equals one if the acquirer and target companies have 

the same two-digit SIC code, and zero otherwise.  

Combined Skewness: The average return skewness across the acquirer and the target, 

weighted by the acquirer’s and target’s market capitalization in the month prior to the 

announcement. Return skewness is calculated as 𝑠 =  (1/12) × ∑𝑡 (𝑟𝑡  − 𝜇)3 / 𝜎3 , 

where 𝑠 is calculated using monthly returns over a one-year window, 𝜇 is the mean return, 

and 𝜎 is the standard deviation of returns. 

Combined Idiosyncratic Volatility: The average idiosyncratic volatility across the acquirer 

and the target, weighted by the acquirer’s and target’s market capitalization in the month prior 

to the announcement. Idiosyncratic volatility is estimated based on residuals from the Fama-

French 3-factor model over a one-year window using monthly returns.  



50 
 

 A3. Conglomerates 

Disagreement: For each of the conglomerate’s underlying segments, I calculate the average 

price-scaled earnings forecast dispersion across single-segment firms in that segment. 

Disagreement is the sales-weighted average of the conglomerate’s underlying segment 

dispersions.  

Total Assets: The conglomerate’s total assets.  

Leverage: The conglomerate’s long-term debt over total assets.  

Profitability: The conglomerate’s earnings before interest and tax over net revenue.  

Investment Ratio: The conglomerate’s capital expenditure over net revenue.  

Excess Skewness: The difference between the return skewness of the conglomerate and its 

imputed return skewness. Return skewness is calculated as 𝑠 =  (1/12) × ∑𝑡 (𝑟𝑡  − 𝜇)3 /

 𝜎3 , where 𝑠 is calculated using monthly returns over a one-year window, 𝜇 is the mean 

return, and 𝜎 is the standard deviation of returns. For each of the conglomerate’s underlying 

segments, I compute the average skewness across single-segment firms in that segment. The 

imputed return skewness is the sales-weighted average segment skewness. 

Excess Idiosyncratic Volatility Rank: The difference between the idiosyncratic volatility of 

the conglomerate and its imputed idiosyncratic volatility. Idiosyncratic volatility is estimated 

based on residuals from the Fama-French 3-factor model over a one-year window using 

monthly returns. For each of the conglomerate’s underlying segments, I compute the average 



51 
 

idiosyncratic volatility across single-segment firms in that segment. The imputed idiosyncratic 

volatility is the sales-weighted average of those segment volatilities.  
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(a) 𝑢 = 0.08 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 𝑢 = 0.01 

 

Figure 1 Heterogeneous Holdings Equilibrium and Homogeneous Holdings Equilibrium 

This figure demonstrates the utility that an investor with cumulative prospect theory preferences derives from 

adding a position in a portfolio which equally invests in two positively skewed securities to his current holdings 

of a normally distributed market portfolio. The variable 𝜙 is the fraction of wealth allocated to the portfolio 

relative to the fraction of wealth allocated to the market portfolio. The variable 𝑢 is the probability that both 

skewed securities pay out “jackpots” at the same time. In Figure 1a, 𝑢 = 0.08, while in Figure 1b, 𝑢 = 0.01. The 

price of the portfolio is denoted as 𝑝𝑠 . Both figures use the following parameters: (𝛼, 𝛽, 𝛾, 𝛿, 𝜆) =

(0.88, 0.88, 0.65, 0.65, 2.25) and (𝜎𝑚, 𝑟𝑓 , 𝐽, 𝑣) = (0.15, 1.02, 10, 0.09). In both figures, the red line is based on 

the price of the portfolio from a heterogenous holdings equilibrium, and the blue line is based on the price from a 

homogenous holdings equilibrium.  
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Figure 2 Portfolio Discount and 𝑪𝒐𝑴𝒂𝒙 

This figure plots the price discount of a portfolio which equally invests in two skewed securities as a function of 

𝐶𝑜𝑀𝑎𝑥. 𝐶𝑜𝑀𝑎𝑥 = 𝑢/𝑣 , where 𝑣 is the probability that each skewed security pays out “jackpots” individually, 

and 𝑢 is the probability that both skewed securities pay out “jackpots” at the same time. I use the following 

parameters to search the equilibrium prices for the portfolio: (𝛼, 𝛽, 𝛾, 𝛿, 𝜆) = (0.88, 0.88, 0.65, 0.65, 2.25) and 

(𝜎𝑚, 𝑟𝑓 , 𝐽, 𝑣) = (0.15, 1.02, 10, 0.09) . For each value of 𝐶𝑜𝑀𝑎𝑥 , I search for a heterogeneous holdings 

equilibrium first, and if it does not exist, a homogenous holdings equilibrium. 
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Figure 3 𝒗, 𝑪𝒐𝑴𝒂𝒙 and Portfolio Discount 

This figure plots the price discount of a portfolio which equally invests in two skewed securities as a function of 

(a) 𝐶𝑜𝑀𝑎𝑥, the tendency that both skewed securities pay off “jackpots” at the same time; and (b) 𝑣, the degree 

of skewness for each of the skewed securities. I use the following parameters to search the equilibrium prices for 

the portfolio: (𝛼, 𝛽, 𝛾, 𝛿, 𝜆) = (0.88, 0.88, 0.65, 0.65, 2.25)  and (𝜎𝑚, 𝑟𝑓 , 𝐽) = (0.15, 1.02, 10) . For each 

𝐶𝑜𝑀𝑎𝑥 and 𝑣, I search for a heterogeneous holdings equilibrium first, and if it does not exist, a homogenous 

holdings equilibrium.  

  



55 
 

Table1 Descriptive Statistics 

This table presents descriptive statistics for CEFs (Panel A), M&A deals (Panel B), and conglomerates (Panel C). 

In Panel A, CEF Discount is defined as the difference between the price of the CEF and the its NAV, divided by 

NAV. I use the average top 5 daily returns within a month (Max5) to proxy for lottery-like feature for the CEF 

and its holdings. I denote CEF_Max5 as the Max5 for a CEF and Holding_Max5 as the average Max5 from a 

CEF’s holdings, weighted by holding percentage. Ex_Max5 is the difference between CEF_Max5 and 

Holding_Max5. For each possible stock pairs among the top ten holdings, CoMax5 is the percentage of top 5 daily 

returns that are recorded in the same day, and Pair_Max5 is the average Max5 of the stock pair, weighted by 

holding percentage. Pair_Max5, CoMax5, and Pair_Max5×CoMax5 are then taken weighted average across all 

stock pairs (I keep the same notations). Note that after Pair_Max5 is taken weighted average across all stock pairs, 

it equals Holding_Max5. In Panel B, Combined_CAR [-1,+1], i.e., the combined announcement return, is defined 

as the average cumulative abnormal return over days [-1,+1] across the acquirer and the target, weighted by their 

market capitalization in the month prior to the announcement, where t=0 is the announcement day, or the ensuing 

trading day if the deal is announced when the market is closed. The degree of lottery likeness of the acquirer 

(target) is proxied by the average of the acquirer’s (target’s) top-3 monthly returns within the past year before the 

announcement (denoted as Max3A and Max3T). Combined_Max3 is the average of Max3A and Max3T, weighted 

by their respective market capitalizations in the month prior to the announcement. CoMax3 is the percentage of 

the top-3 monthly returns that are recorded in the same month. In Panel C, the conglomerate discount is defined 

as the difference between a conglomerate’s market-to-book ratio and its Imputed_MEBE, scaled by 

Imputed_MEBE, where Imputed_MEBE is defined as the average Seg_MEBE across a conglomerate’s segments 

weighted by this conglomerate’s net sales from each segment, and Seg_MEBE is defined as the sales-weighted 

average market-to-book values across single-segment firms within each segment. I proxy lottery-like feature for 

a firm by the average top-3 monthly returns within the fiscal year (Max3). Ex_Max3 is defined as the difference 

between a conglomerate’s Max3 (Cong_Max3) and its Imputed_Max3, where Imputed_Max3 is the average 

Seg_Max3 across a conglomerate’s segments, weighted by this conglomerate’s net sales from each segment, and 

Seg_Max3 is the sales-weighted average Max3 across five single-segment firms chosen similar to the 

conglomerate’s operation in that segment based on SIC code and sales. CoMax3 is the percentage of top-3 monthly 

returns that are recorded in the same month for every possible stock pairs constructed from any two different 

underlying segments, and Pair_Max3 is the average Max3 from these two stocks. Pair_Max3, CoMax3, and 

Pair_Max3×CoMax3 are then taken weighted average across all stock pairs and segment pairs (I keep the same 

notations). The definitions of all control variables are described in the appendix. 
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Panel A: Closed-end Funds       

Variables N Mean StdDev p25 p50 p75 

CEF Discount 2330 -0.047 0.143 -0.124 -0.090  -0.025  

Ex_Max5 2330 -0.006 0.007 -0.009 -0.006  -0.003  

Holding_Max5 2330 0.020 0.010 0.014 0.017  0.022  

CEF_Max5 2330 0.014 0.010 0.008 0.011  0.015  

CoMax5 2330 0.445 0.102 0.372 0.436  0.512  

Pair_Max5×CoMax5 2330 0.063 0.129 0.026 0.039  0.062  

Disagreement 2330 0.001 0.001 0.001 0.001  0.001  

Inverse Price 2330 0.094 0.068 0.055 0.075  0.107  

Dividend Yield 2330 0.083 0.048 0.061 0.083  0.100  

Expense Ratio 2330 0.013 0.007 0.010 0.012  0.014  

Liquidity 2330 0.460 0.384 0.244 0.380  0.576  

Ex_Tskew 2330 -0.405 0.753 -0.734 -0.313  0.015  

Ex_Ivol 2330 -0.004 0.006 -0.007 -0.004  -0.002  

Panel B: Mergers and Acquisitions      

Variables N Mean StdDev p25 p50 p75 

Combined_CAR [-1,+1] 1145 0.016 0.070 -0.017 0.010  0.047  

Combined_Max3 1145 0.154 0.099 0.091 0.129  0.186  

CoMax3 1145 0.380 0.256 0.333 0.333  0.667  

Combined_Max3×CoMax3 1145 0.062 0.068 0.023 0.046  0.081  

Disagreement 1145 0.002 0.007 0.000 0.001  0.002  

Acq_MktCap ($M) 1145 22543 49701 1378 4509  17441  

Acq_MEBE 1145 4.278 6.342 1.818 2.873  4.923  

Acq_ROA 1145 0.105 0.096 0.053 0.103  0.157  

Acq_Leverage 1145 0.538 0.210 0.378 0.545  0.672  

Acq_OCF 1145 0.101 0.091 0.048 0.105  0.153  

Tgt_MktCap ($M) 1145 1899 5755  173  464  1425  

Tgt_MEBE 1145 3.972 17.238 1.460 2.255  3.539  

Tgt_ROA 1145 0.047 0.160 0.016 0.070  0.122  

(Continued)
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(Continued) 

Variables N Mean StdDev p25 p50 p75 

Tgt_Leverage 1145 0.484 0.245 0.271 0.483  0.667  

Tgt_OCF 1145 0.057 0.138 0.017 0.073  0.126  

Relative Size 1145 0.831 0.160 0.722 0.890  0.962  

Combined_Tskew 1145 0.150 0.642 -0.238 0.147  0.549  

Combined_Ivol 1145 0.076 0.048 0.045 0.065  0.095  

Panel C: Conglomerates       

Variables N Mean StdDev p25 p50 p75 

Conglomerate Discount 15907 -0.130 0.981 -0.583 -0.292  0.171  

Ex_Max3 15907 -0.014 0.105 -0.044 -0.005  0.021  

Imputed_Max3 15907 0.157 0.111 0.092 0.129  0.187  

Cong_Max3 15907 0.143 0.053 0.109 0.133  0.166  

CoMax3 15907 0.329 0.087 0.270 0.320  0.380  

Pair_Max3×CoMax3 15907 0.027 0.014 0.017 0.024  0.032  

Disagreement 15907 0.050 0.052 0.015 0.032  0.066  

Total Asset ($M) 15907 3507 8402  89  342  1632  

Leverage 15907 0.201 0.156 0.071 0.183  0.299  

Profitability 15907 0.072 0.096 0.032 0.072  0.116  

Investment Ratio 15907 0.076 0.104 0.024 0.044  0.080  

Ex_Tskew 15907 -0.077 0.869 -0.610 0.050  0.489  

Ex_Ivol 15907 -0.011 0.056 -0.030 0.000  0.020  
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Table 2 Compare Lottery-like Features 

This table compares lottery-like feature proxies for CEFs (Panel A), M&A (Panel B), and conglomerates (Panel 

C). In Panel A, I use the average top 5 daily returns within a month (Max5) to proxy for lottery-like feature for 

the CEF and its holdings. I denote CEF_Max5 as the Max5 for a CEF and Holding_Max5 as the average Max5 

from a CEF’s holdings, weighted by holding percentage. In Panel B, the degree of lottery likeness of the acquirer 

(target) is proxied by the average of the acquirer’s (target’s) top-3 monthly returns within the past year before the 

announcement (denoted as Max3A and Max3T). Combined_Max3 is the average of Max3A and Max3T, weighted 

by their respective market capitalizations in the month prior to the announcement. In Panel C, I proxy lottery-like 

feature for conglomerates and single-segment firms by the average top-3 monthly returns within the fiscal year 

(Max3). T-statistics are provided in the brackets. 

Panel A: CEFs 

Mean Std Dev 25th Pctl 50th Pctl 75th Pctl

Distribution of Holding’s Max5 0.022 0.016 0.013 0.018 0.030 

Distribution of CEF’s Max5 0.014 0.010 0.008 0.011 0.015 
 

CEF’s Max5 – Holding’s Max5 -0.009  

(-34.44)  

Panel B: M&A 

Mean Std Dev 25th Pctl 50th Pctl 75th Pctl

Distribution of Max3T 0.193 0.132 0.114 0.158 0.235 

Distribution of Max3A 0.151 0.105 0.086 0.126 0.185 

Distribution of Combined_Max3 0.154 0.099 0.091 0.129 0.186 
 

Max3T – Combined_Max3 0.039  

(12.34)  

Max3T – Max3A 0.042  

(11.63)  

Panel C: Conglomerates 

Mean Std Dev 25th Pctl 50th Pctl 75th Pctl

Distribution of Single-Segment Firm's Max3 0.162 0.103 0.106 0.140 0.198 

Distribution of Conglomerate Firm's Max3 0.143 0.053 0.109 0.133  0.166 

      

Conglomerate's Max3 – Single-Segment’s Max3 -0.019  

(-32.08)  
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Table 3 Closed-end Fund Discounts 

This table reports coefficient estimates from regressions of CEF discounts on measures of the lottery-like features. 

The dependent variable is the CEF discount, defined as the difference between the CEF’s market price and the 

CEF’s NAV, divided by NAV (expressed in %). I use the average top 5 daily returns within a month (Max5) to 

proxy for lottery-like feature for the CEF and its holdings. I denote CEF_Max5 as the Max5 for a CEF and 

Holding_Max5 as the average Max5 from a CEF’s holdings, weighted by holding percentage. Ex_Max5 is the 

difference between CEF_Max5 and Holding_Max5. For each possible stock pairs among the top ten holdings, 

CoMax5 is the percentage of top 5 daily returns that are recorded in the same day, and Pair_Max5 is the average 

Max5 of the stock pair, weighted by holding percentage. Pair_Max5, CoMax5, and Pair_Max5×CoMax5 are then 

taken weighted average across all stock pairs (I keep the same notations). Note that after Pair_Max5 is taken 

weighted average across all stock pairs, it equals Holding_Max5. Detailed description of all control variables can 

be found in the appendix. All independent variables are standardized to have a mean of zero and a standard 

deviation of one. I estimate fixed effect regressions with standard errors (reported in brackets) clustered along 

both time and fund dimensions. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively. 

  Dependent Variable: CEF Discount 

VARIABLES (1) (2) (3) (4) (5) (6) (7) 

Ex_Max5 4.794*** 1.068** 0.990***     

 (1.416) (0.486) (0.352)     

Holding_Max5    -7.170*** -7.906*** -2.065** -1.211***

    (2.537) (2.483) (0.944) (0.409) 

CEF_Max5    6.678*** 6.256*** 1.357* 1.647** 

    (1.759) (1.895) (0.777) (0.662) 

Pair_Max5×CoMax5     1.170** 1.003** 0.520*** 

     (0.468) (0.402) (0.178) 

CoMax5     0.073 -0.624 -0.802** 

     (0.933) (0.463) (0.381) 

Disagreement  -0.072 0.862*   -0.196 0.727 

  (0.504) (0.484)   (0.587) (0.474) 

Inve_Price[pos]  3.794** -0.423   3.530* -0.488 

  (1.934) (1.605)   (1.922) (1.545) 

(Continued)
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(Continued) 

  Dependent Variable: CEF Discount 

VARIABLES (1) (2) (3) (4) (5) (6) (7) 

Inv_Price[neg]  -1.338** -3.878***   -1.435*** -3.909***

  (0.544) (1.415)   (0.513) (1.422) 

Div_Yield[pos]  5.245*** 1.275   5.580*** 1.281 

  (1.530) (1.544)   (1.475) (1.483) 

Div_Yield[neg]  0.462 -0.726   0.689 -0.749 

  (0.668) (0.754)   (0.619) (0.733) 

Liquidity  0.368 -1.131**   0.503 -1.109** 

  (0.539) (0.498)   (0.529) (0.483) 

Exp_Ratio  1.130** -0.199   1.090* -0.242 

  (0.570) (0.567)   (0.593) (0.586) 

Ex_Tskew  -0.637 0.438   -0.683 0.449 

  (0.488) (0.549)   (0.479) (0.554) 

Ex_Ivol  1.636*** 0.742**   1.554*** 0.853** 

  (0.424) (0.375)   (0.402) (0.381) 

        

Fixed Effect Time Time Fund, Time Time Time  Time Fund, Time

        

Observations 2,330 2,330 2,330 2,330 2,330 2,330 2,330 

R-squared 0.257 0.695 0.855 0.257 0.262 0.699 0.857 
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Table 4 Combined M&A Announcement Day Returns 

This table reports coefficient estimates from regressions of combined M&A announcement day returns on lottery-

like features. The dependent variable is combined cumulative abnormal return (Combined CAR [−1,+1]), where 

t=0 is the announcement day, or the ensuing trading day if the deal is announced when the market is closed, 

weighted by the market capitalization of both the acquirer and the target. The degree of lottery likeness of the 

acquirer (target) is proxied by the average of the acquirer’s (target’s) top-3 monthly returns within the past year 

before the announcement (denoted as Max3A and Max3T). Combined_Max3 is the average of Max3A and Max3T, 

weighted by their respective market capitalizations in the month prior to the announcement. CoMax3 is the 

percentage of the top-3 monthly returns that are recorded in the same month. Detailed description of all control 

variables can be found in the appendix. All independent variables are standardized to have a mean of zero and a 

standard deviation of one. I estimate time-fixed effect regressions with standard errors (reported in brackets) 

clustered by time. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively. 

  Dependent Variable: Combined_CAR [−1,+1] 

VARIABLES (1) (2) (3) (4) 

Combined_Max3 -0.990* -1.280** -1.268** -1.729*** 

 (0.513) (0.571) (0.542) (0.570) 

CoMax3   0.323 0.256 

   (0.211) (0.207) 

Combined_Max3×CoMax3   0.624*** 0.744*** 

   (0.189) (0.186) 

Disagreement  -0.011  -0.032 

  (0.340)  (0.343) 

Ln(Acq_MktCap)  -0.894*  -0.902* 

  (0.450)  (0.465) 

Ln(Acq_MEBE)  -0.013  0.007 

  (0.352)  (0.353) 

Acq_ROA  0.157  0.179 

  (0.509)  (0.475) 

Acq_Leverage  -0.215  -0.203 

  (0.327)  (0.318) 

Acq_OCF  -0.284  -0.273 

  (0.359)  (0.341) 

Ln(Tgt_MktCap)  0.320  0.286 

  (0.368)  (0.383) 

    (Continued)
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(Continued)     

  Dependent Variable: Combined_CAR [−1,+1] 

VARIABLES (1) (2) (3) (4) 

Ln(Tgt_MEBE)  -0.586**  -0.546** 

  (0.246)  (0.247) 

Tgt_ROA  -0.039  -0.043 

  (0.476)  (0.474) 

Tgt_Leverage  0.385  0.351 

  (0.226)  (0.231) 

Tgt_OCF  -0.011  0.004 

  (0.476)  (0.474) 

Relative Size  -0.987**  -0.996** 

  (0.395)  (0.385) 

Tender Offer  0.164  0.169 

  (0.207)  (0.204) 

Hostile Offer  0.389  0.373 

  (0.241)  (0.233) 

Competing Offer  -0.078  -0.043 

  (0.202)  (0.191) 

Cash Only  1.330***  1.288*** 

  (0.206)  (0.204) 

Stock Only  -0.031  -0.071 

  (0.295)  (0.294) 

Same Industry  0.148  0.098 

  (0.170)  (0.181) 

Combined_Tskew  -0.173  -0.151 

  (0.174)  (0.173) 

Combined_Ivol  0.356  0.497 

  (0.295)  (0.308) 
  

Fixed Effect Time Time Time Time 

Observations 1,145 1,145 1,145 1,145 

R-squared 0.078 0.174 0.087 0.184 
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Table 5 Conglomerate Discounts 

This table reports coefficient estimates from regressions of conglomerate discounts on measures of lotter-like 

features. The dependent variable is conglomerate discount, defined as the difference between a conglomerate’s 

market-to-book ratio and its Imputed_MEBE, scaled by Imputed_MEBE, where Imputed_MEBE is defined as the 

average Seg_MEBE across a conglomerate’s segments weighted by this conglomerate’s net sales from each 

segment, and Seg_MEBE is defined as the sales-weighted average market-to-book values across single-segment 

firms within each segment. I proxy lottery-like feature for a firm by the average top-3 monthly returns within the 

fiscal year (Max3). Ex_Max3 is defined as the difference between a conglomerate’s Max3 (Cong_Max3) and its 

Imputed_Max3, where Imputed_Max3 is defined as the average Seg_Max3 across a conglomerate’s segments, 

weighted by this conglomerate’s net sales from each segment, and Seg_Max3 is defined as the sales-weighted 

average Max3 across five single-segment firms chosen similar to the conglomerate’s operation in that segment 

based on SIC code and sales. CoMax3 is the percentage of top-3 monthly returns that are recorded in the same 

month for every possible stock pairs constructed from any two different underlying segments, and Pair_Max3 is 

the average Max3 from these two stocks. Pair_Max3, CoMax3, and Pair_Max3×CoMax3 are then taken weighted 

average across all stock pairs and segment pairs (I keep the same notations). All independent variables are 

standardized to have a mean of zero and a standard deviation of one. I estimate time-fixed effect regressions with 

standard errors (reported in brackets) clustered by both firm and time. *, **, and *** denote significance at 10%, 

5%, 1% level, respectively. 

  Dependent Variable: Conglomerate Discount 

VARIABLES (1) (2) (3) (4) (5) 

Ex_Max3 0.100*** 0.195***  
 

 
(0.0184) (0.0260)  

 

Imputed_Max3 
 

-0.092*** -0.121*** -0.163*** 

  
(0.021) (0.026) (0.028) 

Cong_Max3 
 

0.097*** 0.097*** 0.202*** 

  
(0.021) (0.020) (0.028) 

Pair_Max3×CoMax3    0.057** 0.074*** 

    (0.025) (0.024) 

CoMax3    -0.042* -0.045** 

    (0.023) (0.021) 

(Continued)
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(Continued) 

  Dependent Variable: Conglomerate Discount 

VARIABLES (1) (2) (3) (4) (5) 

Disagreement 
 

-0.009  -0.008 

  
(0.018)  (0.018) 

Ln(Total Asset) 
 

-0.012  -0.018 

  
(0.107)  (0.108) 

Ln(Total Asset)2 
 

-0.005  -0.004 

  
(0.111)  (0.111) 

Leverage 
 

0.131***  0.130*** 

  
(0.0239)  (0.024) 

Profitability 
 

0.082***  0.080*** 

  
(0.022)  (0.022) 

Investment Ratio 
 

-0.007  -0.005 

  
(0.020)  (0.019) 

Ex_Tskew 
 

-0.046***  -0.046*** 

  
(0.012)  (0.012) 

Ex_Ivol 
 

-0.120***  -0.126*** 

  
(0.019)  (0.019) 

      

Fixed Effect Time Time Time Time Time 

      

Observations 15,907 15,907 15,907 15,907 15,907 

R-squared 0.013 0.042 0.014 0.015 0.043 
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Table 6 Replacing CoMax with Non-Max Correlation 

This table conducts placebo tests by replacing CoMax with non-Max return correlation on CEFs (Panel A), M&A 

deals (Panel B), and conglomerates (Panel C). In Panel A, I report coefficient estimates from regressions of CEF 

discounts on measures of the lottery-like features. The dependent variable is the CEF discount, defined as the 

difference between the CEF’s market price and the CEF’s NAV, divided by NAV (expressed in %). I use the 

average top 5 daily returns within a month (Max5) to proxy for lottery-like feature for the CEF and its holdings. I 

denote CEF_Max5 as the Max5 for a CEF and Holding_Max5 as the average Max5 from a CEF’s holdings, 

weighted by holding percentage. For each possible stock pairs among the top ten holdings, Non-Max-Corr is the 

return correlation excluding top 5 daily returns that are recorded in the same day and Pair_Max5 is the average 

Max5 of the stock pair, weighted by holding percentage. Pair_Max5, Non-Max-Corr, and Pair_Max5×Non-Max-

Corr are then taken weighted average across all stock pairs (I keep the same notations). Note that after Pair_Max5 

is taken weighted average across all stock pairs, it equals Holding_Max5. All control variables are exactly the 

same as in Table 3. I estimate fixed effect regressions with standard errors (reported in brackets) clustered along 

both time and fund dimensions. In Panel B, I report coefficient estimates from regressions of combined M&A 

announcement day returns on measure of lottery-like features. The dependent variable is combined cumulative 

abnormal return (Combined CAR [−1,+1]), where t=0 is the announcement day, or the ensuing trading day if the 

deal is announced when the market is closed, weighted by the market capitalization of both the acquirer and the 

target. The degree of lottery likeness of the acquirer (target) is proxied by the average of the acquirer’s (target’s) 

top-3 monthly returns within the past year before the announcement (denoted as Max3A and Max3T). 

Combined_Max3 is the average of Max3A and Max3T, weighted by their respective market capitalizations in the 

month prior to the announcement. For each deal, Non-Max-Corr is the return correlation excluding top-3 monthly 

returns that are recorded in the same month. All control variables are exactly the same as in Table 4. I estimate 

time-fixed effect regressions with standard errors (reported in brackets) clustered by time. In Panel C, I report 

coefficient estimates from regressions of conglomerate discounts on measures of lotter-like features. The 

dependent variable is conglomerate discount, defined as the difference between a conglomerate’s market-to-book 

ratio and its Imputed_MEBE, scaled by Imputed_MEBE, where Imputed_MEBE is defined as the average 

Seg_MEBE across a conglomerate’s segments weighted by this conglomerate’s net sales from each segment, and 

Seg_MEBE is defined as the sales-weighted average market-to-book values across single-segment firms within 

each segment. I proxy lottery-like feature for a firm by the average top-3 monthly returns within the fiscal year 

(Max3). Imputed_Max3 is defined as the average Seg_Max3 across a conglomerate’s segments, weighted by this 

conglomerate’s net sales from each segment, and Seg_Max3 is defined as the sales-weighted average Max3 across 

five single-segment firms chosen similar to the conglomerate’s operation in that segment based on SIC code and 

sales. Non-Max-Corr is the return correlation excluding top-3 monthly returns that are recorded in the same month 

for every possible stock pairs constructed from any two different underlying segments, and Pair_Max3 is the 

average Max3 from these two stocks. Pair_Max3, Non-Max-Corr, and Pair_Max3×Non-Max-Corr are then taken 

weighted average across all stock pairs and segment pairs (I keep the same notations). Note that after Pair_Max3 
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is taken weighted average across all stock pairs and segment pairs, it equals Imputed_Max3. All control variables 

are exactly the same as in Table 5. I estimate time-fixed effect regressions with standard errors (reported in 

brackets) clustered by both firm and time. Detailed description of control variables from all panels can be found 

in the appendix. All independent variables are standardized to have a mean of zero and a standard deviation of 

one. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively. 

Panel A: Closed-end Funds 

  Dependent Variable: CEF Discount 

VARIABLES (1) (2) (3) 

Holding_Max5 -7.463*** -1.767** -1.331*** 

 (2.384) (0.877) (0.500) 

CEF_Max5 6.940*** 1.731*** 1.614*** 

 (1.728) (0.574) (0.478) 

Pair_Max5×Non_Max_Corr 0.411 0.109 0.093 

 (0.492) (0.345) (0.129) 

Non_Max_Corr -0.225 -0.598 -0.426* 

 (0.910) (0.455) (0.229) 
  

Controls No Yes Yes 

Fixed Effect Time  Time Fund, Time 

    

Observations 2,330 2,330 2,330 

R-squared 0.212 0.676 0.840 

Panel B: Mergers and Acquisitions 

  Dependent Variable: Combined CAR[-1,+1] 

VARIABLES (1) (2) 

Combined_Max3 -1.036* -1.418** 

 (0.505) (0.522) 

Non_Max_Corr 0.221 0.251 

 (0.218) (0.205) 

Combined_Max3×Non_Max_Corr 0.126 0.238 

 (0.255) (0.253) 
  

Controls No Yes 

Fixed Effect Time  Time 
  

Observations 1,145 1,145 

R-squared 0.079 0.176 

(Continued)
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(Continued) 

Panel C: Conglomerates 

  Dependent Variable: Conglomerate Discount 

VARIABLES (1) (2) 

Imputed_Max3 -0.085*** -0.119*** 

 (0.021) (0.022) 

Cong_Max3 0.099*** 0.200*** 

 (0.020) (0.028) 

Pair_Max3×Non_Max_Corr -0.058* -0.032 

 (0.033) (0.030) 

Non_Max_Corr 0.025 0.009 

 (0.031) (0.026) 

   

Controls No Yes 

Fixed Effect Time Time 
  

Observations 15,907 15,907 

R-squared 0.015 0.042 
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Table 7 Likelihood of Selection at CEF Inception and Likelihood of M&A 

This table examines the effect of lottery-like features on the likelihood of selection at CEF inception (Panel A) 

and the likelihood of M&A (Panel B). In Panel A, I report coefficient estimates from logit regressions of CEFs’ 

actual and potential holding stock pairs at inception on the pairs’ lottery-like features. For each of the top-10 

stocks at inception, I identify 10 pseudo stocks that are not selected but are very similar to the actual holding. 

Specifically, I apply propensity score matching based on firm size, book-to-market ratio and past twelve months’ 

return and select the 10 pseudo stocks that are closest to the actual holding in terms of propensity scores. I end up 

with 45 actual top-10 stock pairs and 4,500 pseudo pairs for each fund at inception. I estimate pooled logit 

regressions, where the dependent variable equals one if the stock pair consists of actual top-10 holdings, and zero 

otherwise. I pool all actual and potential pairs together for logit regressions. The dependent variable equals one 

for the actual pairs, and zero otherwise. I use the average top 5 daily returns within a month (Max5) to proxy for 

lottery-like feature for stocks. For each possible stock pairs among the top ten holdings, CoMax5 is the percentage 

of top 5 daily returns that are recorded in the same day, and Pair_Max5 is the average Max5 of the stock pair, 

weighted by holding percentage. Time fixed effects are included and standard errors are clustered by time 

(reported in parentheses). In Panel B, I report coefficient estimates from logit regressions of actual and potential 

M&A deals on measures of lottery-like features. In Columns (1) and (2), I search ten potential targets for each 

actual acquirer, based on propensity-score matching by reference to two-digit SIC code, firm characteristics, and 

relative size to the actual acquirer. These potential targets are similar to the actual target but are not involved in 

the M&A. The sample is further divided into two groups: non-lottery-like acquirers (Max3A in the bottom tercile) 

and lottery-like acquirers (Max3A in the top tercile). In Columns (3) and (4), I search ten potential acquirers for 

each actual target in each M&A, based on propensity-score matching by reference to two-digit SIC code, firm 

characteristics, and relative size to the actual target. These potential acquirers are similar to the actual acquirer but 

are not involved in the M&A. The sample is further divided into two groups: non-lottery-like targets (Max3T in 

the bottom tercile) and lottery-like targets (Max3T in the top tercile). In Column 5, I search both potential acquirers 

and potential targets based on the above requirements. In all five columns, I pool actual and pseudo acquirer-

target pairs together and run logit regressions. The dependent variable equals one for the actual M&A, and zero 

otherwise. The degree of lottery likeness of the acquirer (target) is proxied by the average of the acquirer’s (target’s) 

top-3 monthly returns within the past year before the announcement (denoted as Max3A and Max3T). 

Combined_Max3 is the average of Max3A and Max3T, weighted by their respective market capitalizations in the 

month prior to the announcement. CoMax3 is the percentage of the top-3 monthly returns that are recorded in the 

same month. Time fixed effects are included and standard errors are clustered by time (reported in parentheses). 

All variables in both panels are standardized to have a mean of zero and a standard deviation of one. *, **, and 

*** denote significance at the 10%, 5%, and 1% level, respectively. 
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Panel A: CEF Inceptions 

VARIABLES (1) (2) 

Pair_Max5 -0.239*** -0.162*** 

 (0.035) (0.063) 

CoMax5  0.249*** 

  (0.065) 

Pair_Max5×CoMax5  -0.120 

  (0.084) 

   

Stock Characteristics Yes Yes 

  

Observations 172,710 172,710 

Panel B: Likelihood of Mergers and Acquisitions 

 Pseudo Tgt Only Pseudo Acq Only  Pseudo Acq 

and Pseudo 

Tgt 
 

Non-lottery-

like Acq  

Lottery-

like Acq 

Non-lottery-

like Tgt  

Lottery-

like Tgt 
 

VARIABLES (1) (2) (3) (4)  (5) 

Combined_Max3 -0.164 -0.147 -0.087 -0.083  -0.090 

 (0.228) (0.098) (0.172) (0.069)  (0.071) 

CoMax3 0.140 -0.129 -0.016 -0.038  0.029 

 (0.165) (0.127) (0.125) (0.078)  (0.077) 

Combined_Max3 

×CoMax3 

0.003 0.288** 0.237 0.183**  0.166** 

(0.319) (0.116) (0.215) (0.077)  (0.080) 

       

Acquirer Characteristics Yes Yes Yes Yes  Yes 

Target Characteristics Yes Yes Yes Yes  Yes 

Relative Size Yes Yes Yes Yes  Yes 

    

Observations 4,565 4,565  4,653 4,653  77,319 

 


