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Intervention Model

Yt = Gp + a1—1 + Coz + 5, |ag| < 1.

\ \ U.f < TD
a deterministic intervention z; = .

1.t = 1

The pulse response tunction is
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T'he long-run etfect of the intervention ( ¢ — o0) is
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Intervention Model: Extension

y: = ap + A(L )y + oz + B(L)s; (ARMA(p,q) intervention model)

yy = ag + A(L)y:—1 + cozi—q + B(L)c; (ARMA(p,q) delayed intervention model)

(0 t<Tpy-1
Ni-:{ 1?t=Tﬂ l/-r]'?t=TDJ

0, otherwise =214 1/2,t=Ty+1 (Gradually changing function)
(Pulse function) 3/4, t=Tp+2
1 t>Th+3

v

0, t =<Tp—1
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1 t="T)

1

3/4, t=Tp+1

Zp = 4 /4, o (Prolonged impulse function)
1/2, t =Ty + 2

1/4, t=Tp+3

0, t>Tp+4




Intervention Model: Estimation

Estimation: First, estimate the most appropriate models for both the pre- and
post-intervention periods to check if the coefficients in the model are invarnant to the
intervention. If no, estimate the various models over the entire sample period and
perform diagnostic checks ot the estimated model to ensure that: (1) All coefficients
should be significant and the AR coefficients imply that the series 1s stationary; (2) The
residuals should approximate white noise; (3) The selected model outperforms other
alternatives: using the AIC, SBC. Three steps for the estimation: P244-246.

Note: The effects of the intervention will change 1f {1} has a umt root. In this
case, a pulse intervention will have a permanet effect on the level of {y;}; a pure jump
intervention will act as a drift term in the process. An intervention will have a temporary

effect on a unit root process if all values of {z;} sum to zero.



Transfer Function Model

ys = ag + A(L)y:—1 + C(L)z + B(L)z;

a stochastic exogenous variable z

E(ze_,) = 0 for all 5 and t; {z} are independent.
(’(L) 1s called the transfer function.

The crosscorrelation function (CCF) between y; and the various z;_; 1s

- Cov(ye, zs)
ijz(l') - : !

Ty

The cross-covariance function (CCVF) between y; and the various z;_; 1s

Cov Tt
- (1) _ o1 I:Eff;, t )

2
Oz




Transfer Function Model: Example

Y = Q1Ys_1 — Cqlt_qg + ¢, where z; 1s 1.1.d. with Ez = 0 and Var(z) = o2

h =

Eypzn=0Ey%1=0, Eyz_g1=0

o2
Eyzig = cao,
Ey;z = cqa,0°

UtZt—d—1 = Cid T,

. _ .23
Eyz g = caye;

cdzf_df(l — ﬂ-lf_.r) — Ef/K(l — {I|L-j

o0

Cy Zai,zt_d_i +&¢/(1 —a,L),

i=0

Py (1)

F:"yﬁ(i} =

-

0, i<d-—1,
. i ] ;T d
Cgty TL/0,, 1= d.
0, i<d-—1.
cgay™®, i = d.

(i) =aip,(1—1), i = d+1 (decay at the rate a,)



Transfer Function Model

Y = G Ys_1 + CqZt—g + Car17t—a—1 + &+, where Ez = 0 and Var(z) = 0.

pli) = 0, i=d—1,
= cq0./0,, i =d,
= (cqa +Ed+|)f’fﬁf”y: i=d+ 1,

a . i—d—1 ! - e i
= (cqa; + cge1)a; o./oy, i > d+2.

Y1) = 0, i<d-—1,
= (g4, 'I.=ﬂf?

= CgQ1 1+ Cg+1, i=d+ J_J

= (cga; +capr)a™ ! i =d+2.

1

Py:(1) = aipy.(i — 1), i = d+2 (decay at the rate a)



Transfer Function Model

ye = ao + A(L)ys—1 + C(L)z: + B(L)es.

Yyz(7) = 0, until the first nonzero element of (L)
B(L) 1s immaterial to CCVF
A spike in the CCV F indicates a nonzero element of C'(L)

All spikes have a decay pattern.
Ys = Q1ls—1 + Qals—s + CaZs—q + ¢. The CCVF satisfies
"r"yz'[i) = 0,i=d—-1,
= ¢y, 1 =d,

= {Ilﬁryz(ﬁ — l) + ﬂ-g’"f'yzl[i — 2)? i = d+ 1.

an 1mtial spike at lag d, then the decay pattern.

Restriction: 1) Restrict the form of the transfer function. 2) No feedback from
{y:} to {z:}. For the coefficients of C'(L) to be unbiased estimates of the impact effects
of {z} on {y;}, z: must be uncorrelated with the error term {z;} at all leads and lags.



Vector White Noise and Stationary

Vector White Noise Process
{e:} satistying: (1) Ec; = 0; (11) E(cc}) = Q15 a definite matrix; (1) E(g2)) =0, t + s.

£l

Let v = (y14, - - , Ynt)- The mean of y; 15
Ey: = (Eyi, - 1Eynt); = (H1e, " }#nt)’ = P*jt-

The autocovariance matrix (or function) is

[(E0) = Ef(ye—pe)(ye— pe) T(th) = B (g — o) o — Pon) |
/ var(y) cov(yys, o) - cm;(ymym)\ cov(yie,Yi4-n)  CoU(Yre Yagh) OVt Yng-n)
~ cm;(y%]y“) 1,!ar[y2t) cm;‘(ygf]ym) B cov (Yo, Y14-h) Uit Yos—n) 0 COU(Yot, Yng—h)
COU(Ynt, Y1t)  COU(Yt, Yre) -+ VAT (Yt) OV Ynt, Y14-n)  COU(Yrnt, Yogn) -+ COU(Ynt, Yn1-n)

{y:} 15 stationary if the second moment 15 finite and Ey; = u

and ['(¢, h) 1s related with h, but not with ¢.



Vector White Noise and Stationary

(=P \' ) ) ] ) )
Example: Let ' 1s a vector white process with var-covariance matrix
FEf J

( L0 \ Show that J( -1t \} 12 alzo r white process, where ¢,

ot = F:t

10



Vector Autoregression Model

Both {4} and {z} are endogenous.
y; and z; are allowed to affect each other (feedback effect).

Consider the simple bivariate svstem

Ye =b1o — Draze + Y le—1 + Yo Z— + Eyt

the structural VAR :
7 = bag — bayy: + Va1 Ye—1 T Vo Tt—1 T £z

where {1:} and {z} are stationary, ¢,; and c.; are white-noise with variances 0. and o2,
respectively, and ¢,; and =.; are uncorrelated. Write the structural model as

(1
\ &,

by

b Y () (20 ) o) (3 ) (),
1 /‘\aet/' ‘\‘520/ IKﬂ.’zl ”I'g';-} '\zt—lj \\‘r—_-zt/'

denoted as
xy — Ag + Ay + e,

, 1 \ ’

. — err | ( L by Eyt ) [ eyt —biagat) /{1 — byabyy)

. = = = ) _
€2¢ by 1 Eat (€26 — ba1Eye) /(1 — Dy12bay)



Vector Autoregression Model

we obtain the VAR 1n the reduced form:

] UYe = Qg + A1 Ys—1 T A1234—1 + €
VAR 1n standard form: { st 0 1131 12t 1t

Zt = Qag T A21Ys—1 T A92Z4_1 T €94

1 b
ftZBEt B=( 12).
bm 1

The variance-covanance matrix of e; 18

2
R ( oo ) — Eeel, = B~ Ecyel B!
T a1 I:’IZ
1 {T —|—blzﬂ' —(bg|f?'2—|—b|gﬁzj
(l—ﬁlgbmjz —{bglﬂy+b|gﬁz] t‘T —|—b21{3"

).
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VAR: Stationary

(1 — axpl)z = agp + az Ly; + ey

Y = Qg +an Y1 + Q221 + ez (1 —anl)y: = aio + 2Lz + ey
Zt = Qop T A1 Yp—1 T A2 Zp—1 T+ €24

o ao(1l — aga) + ajpaz + (1 — asaL)eys + arae2:—
vt (1 —ayL)(1 —anl) — appas L’
. ag(l — ay) + asap + (1 — ajpL)ey + azies—
‘ (1 —ayL)(1 —anl) — appas L’

which show that: 1) {y:} and {z} have the same charactenstic equation, and
hence {1 and {z} exhibit similar time paths; 2) The stability condition for
{y:} and {z} requires that the roots of the polynomial equation (1 —a L)(1 —
a3 L) — @aypa;, L2 — 0O lie outside the unit circle, or. equivalently, the roots (the
charactenstic roots of the matrix A,) of the following characteristic equation of
A

A —ai —2

=1
—da2 A — a

lie inside the unil circle.

13



VAR: Stationary

Under the stationarity,

T = Ap+ Arxi—1 + e

= u+ Z Ale:_; (here AT —0asn — ),
i=0

where pu = (I — A;)™! A.

the varnance-covariance matrix of r; 18

E(ry — p)(w — ) = Z AflEf’-t—ff’-;—j H“
ij=0
— AlBe e, (A)) = ) AT (4]
i=(0 i=0

r

14



VAR Process: Co-movement Pattern

1) yt = U‘Tyt—l T U‘j:t—l + Elt :)) 'y-g- = U.;r]yf_I —_— U.z:-g-_[ —+ €1
2 =02y +0.T2—1 + exn ‘ =02y +09z_1 +exn
TR #1 ” TR R #2
| |

I T

—10 1

o 30 100
{ch {d)
'{) I = U.-ﬁyt_[ T U.-ﬁ:;_| + €t _1-) W = 0.9 + U.Elj_'ff_[ -+ U.5zt_1 + €14
72 = 0.0y +0.524—1 + ey 2 =05y + 0.5z + exn

15



VAR: Identification

O Estimating the structural VAR Is inappropriate
because of the endogeneity of z, in the first
equation and the endogeneity of y, in the
second equation.

O However, there is no such problem in
estimating the reduced-form VAR model. We
obtain nine estimates for the parameters in
the reduced-form.

O Can recover the parameters in the original
structural VAR model from those estimates In
the reduced-form VAR model? No!

16



VAR: Identification Problem

O In structural VAR model, there are ten
parameters to be determined, but in the

reduced VAR we only have gotten 9
estimated parameters —Underidentification

O We have to restrict the original parameters
to ensure that they can be solved by the
relationship between the parameters in the

two forms of the model

17



VAR: Identification

O Choleski decomposition: Impose a restriction on
the primitive system: b2 =0
which means that 1y, does not have a contemporaneous effect on z,.

z = by T TnYt—1 T V227t—1 T £t Tt = Qo T Q21Yt—1 T Q93T T €3¢

—1
o — €1¢ _ L by Eyt . Eyt — b12E 24
+ — p— ==
E9; 0 1 Ext Ezt

(both =, and =,; shocks affect the contemporaneous value of 1,

{ Yr = bro — b122: + Yn1li—1 T Y128—1 T Eyt { Y = Quo T Q1 Ye—1 T Q1221 T €11

but only ¢.; shock affcets the contemporancous value of z,

£yt does not affect ey. z; is “causally prior” to y;)

=, — Be,, ie. Eye \ __ [ 1 b2 et | _ [ e — biaeas .
o 0 1 €24 €2t

18



VAR: Identification 1

O Choleski decomposition: Impose a restriction on
the primitive system: by =0

-1
4 ap |\ [ 1 bia bo\ [ 1 —bn bio l"r( bio — byabag
Ap = = —
(lag U 1 bj[] 1 bgg \ bED
A = @y @12 _ 1 bli
. a1 22 .
= L b bli fa1 Y12 — D12799 H)
0 1 22 ,

v = o7 O12 _ var(ei;)  cov(ey, ea) oy + 01,02 —bia0?
vs 03 cov(eys, eat) var(es) —byy0? o2
which constitute nine equations with nine unknowns. The parameters 1n

structural model can be exaclly 1dentified and recovered [rom Lhe estimales

of the reduced model. Here the ordering of 3 and z; 13 important. 19



VAR: Identification 2

Another solution: set b3 = 0 (2; does not have a contemporaneous effect

on ;). The argument 1s similar. In this case, y; is “causally prior” to z;.

Note: We can restrict the parameters in the way the derivation above works
well. but 1t 1s better that we use the restrictions which have some economic

meanings 1n the structural VAR model.

bl2=a known constant;
structural variance = a constant;

bl12=Db21

20



VAR: Impulse response function

O
x = Ao+ Aixiyte=pu+ Z A‘let_;
i=0

1 [ an an l I —bi Egt i
— —'——
Fr1o b12bay ; ( Qs G ) ( —byy 1 Ezt—i

- D11(1)  r12(2) )
> ( Ou i) dnali) ) = e

|_.=D I-—']

Here ¢, = Al ¢y, 1.e.

Guli) diali) | _ 1 ajp;  ap | I —bp
P (i)  Pali) L =bi2ba \ @y ax —by; 1

are called impulse response function which, in practice, are constructed from
the estimated coefficients in the reduced model. For example, ¢,(1) 1s the instan-
taneous impact (multiplier) of a one-unit change in in =_; on ¥;; ¢,,(1) 15 the

one-period response of a one-umit change mn =_; on y;; > ., ¢5(7) 15 the cumulated

sum of the effects of =_; on the {y;} sequence after n periods:

Oy M et n
+ + -+ .
Z ﬂm du =t e .4 Oz .4

>y P12(i) 18 the long-run multiplier of a one-unit change in in .; on y, which

1s finite since {y.} and {z.} are assumed to be stationary.

21



Impulse response function (

- du (i) f;-ﬂ.zu})
Example 1: b,,=0

Pay (1) oali)

=i ) !{i:']= g; g%).(h"l) (zlr) Eh=ﬂ.38g+‘??lﬂjﬂzr=ﬂﬂ
2 0.7) 4 & 2
Mypidre,, W b e, W

1

0.5 . 0.5

l L

1
H 10 20 0 i 10 15 20

LR =())FF| X BFATR=(z,) FF

22



Impulse response function

Example 2: b,,=0

ma ()17 7

o Mt e, FERN
1 \ |
0.4 - -
=03 |
0 10 20

LR =3I FF

&= “‘Eezr+‘?yl mﬂzﬁﬂn

o
e,
:\ |

025 N

-0.5

TR BFTR () F A

23



VAR: Forecast and Forecast Error

Ly = ;111] +A|:ff_| _|_E'r.]

Eexioy = Ap+ A Trp1 — Eitepg = €44,
. . . 12

Eixsys = Ey (Ao + A1(Ag + A1y +e441) +e142) = (I + Ay) Ag + Az

Tipo — Eitiy s = €100 + Aresy

Ef:fi-.H«L - (I + .-:jll ‘|_ e ‘|— AT_l) A[} _|' .:JJT:Tt

Tiyn — EtToyn = €44n + Atepng +--- + A?_IE:H-

using the impulse response function @; = p+ > - @;5;—; and ¢, = hocs = _B_lgh

o s &

Eixepy = p+ Z O Esep_i = p+ Z DiEt1—i Tpe1 — Bty = PyEean.
i=0 i=l1

e Z $iEiteera—i = p+ Z DiEta—i Tiyy — EiTiis = Poira + P18e11-
=2

i=0

oo o n—I1
Eitin = p+ E ¢OiEectin—i = p+ E Pi€tin—i  Tes1 — Exppy = E PiCttn—i-
24



V AR: Forecast Error Variance Decomposition

the n-step-ahead forecast error of #;.,, 1s

mn—1

Yirn — EtlYtin = Z (D11 (2)Eytan—i + Pal2)Eotrn_i)
i=0
the n-step-ahead forecast error variance of 3., 1s

n—1

”;(”-)=Z(ﬂbu()ff + ¢hy(i)or) =0 Z@H T 0, Z”lz

i=0 i=0

The proporticns of J;{ﬂ-:] due to shocks in the {¢,} and {c.:} sequences are,

o2 >y $uld)

a2(n)
Ezn 1 2
z i=0 "'l

i(n}

: the proportion due to its own shock

(1)
AN

: the proportion due to the shock of the other variable z;.

This 1s the forecast error variance decomposition. If =,; shocks explain none of

the variance of y; at all forecast horizons, {y:} is exogenous, and hence {1 } evolves
independently of =,; shocks and {zt}; It =,;: shocks explain all of the forecast error

variance of y; at all forecast horizons, {4} is entirely endogenous.

25



V AR: Forecast Error Variance Decomposition

nder the restriction = (. the original structural model 1s 1dentified: e;, =
Under th trict bay 0. th 1 structural lel lentified: ey
syt — D125+ and e = =+ All of the one-period forecast error variance of z; is due to .,

since. as n = 1, by (2).

7y 2izo P21(7) _ 7y921(0) —Oor 22 2o P22li) 7303:(0) 1
% - ) Y - 7 3 i a5 B —_— -
o3 (n) o3(1) o3(n) o3 (1)
Similarly, under the restriction b2 = 0, since ey = 5y and ez = —ba 5yt + =4, all of the

one-period forecast error variance of y; 1s due to sy.

26



n-equation VAR (the reduced form)

L1t Ao All(L') AIZ(L) s Aln(L) L1e—1 =51
-T:‘Zt _ A_:m n A2|_(L) Azz_(L) s Aﬂn_(L) -T‘Zf—l " 'E?izr
Lt An[} Anl {L) Anﬂ{L) T Ann(L') Trnt—1 Ent

Aii(L) = a;(1) +a;;(2)L - - + a;ij(p)LP~" (the polynomial in the lag operator L).

Maximum Likelihood Estimation

Suppose e; ~ iidN(0,3),t=1,2 --- | T and x,_,, - - - ,xp are given constant vectors.
i —1f2 ]‘ ! —1
Fler) = (|275)) 2 exp (—;E )
—nT T 1
log L(xy,®s,- - ,x7; A9, A1, ) = — In(27) — = log |5 ——Ze;E_ler
. f 2 2 =1
where e; = x; — Ag — A5
; T

log L* : i Ag . Ay) =C Tl' V= Tl"‘-*_‘
og L*(zy, z9,- - ,xp; Ag, Ay) = C' — 5 V8 €6 = Co— og | X

3 1 T I
Y= T Zf:l €164, 27



n-equation VAR (the reduced form)

It Ao All(L) Alz(L) Aln(L} L1e—1 €1t
$-2t _ A-zo n AZI-(L) Azz_(L) s AEVL-[:L) 3:2t-—l " E-Et
Tnt Anf} Anl {L) An? {L) e Anﬂ(-'{-") Tnt—1 Ent

Aii(L) = agi(1) +ai(2)L - - - + aij(p)LP~" (the polynomial in the lag operator L).
How to select the lag length p7 Begin with the longest plausible lag length

and set the VAR model as the Unrestricted Model: Determine whether a

shorter lag length 1s appropriate. Restrict the coefficients of x;_;s for the lags
between the longest lag length and this shorter lag length to be zero and obtain
the Restricted Model. Then examine the significance of the null of these zero

coefficients by using the y? statistic (likelihood ratio test):

(T —c) (log || — log [Z.])
where T 15 the sample size used in the estimation; ¢ 1s the number of parameters
estimated 1n each equation of the unrestricted model: |X,| 1s the determinant of
the variance-covariance matrix of the residuals from the unrestricted VAR model;
'X,.| 1s the determinant of the variance-covariance matrix of the residuals from
the restricted VAR model. The degree = the number of restrictions. Large value

(greater than the critical value) of this sample statistic implies a rejection of the
restriction; hence use the model with the longer lag length. AIC and SBC

28



VAR: Granger Causality

Granger Causality: How to test whether the lags of one variable enter into the

equation for another variable in a VAR model?
x; does not Granger cause x; < all the coef ficients of A;;(L) equal zero.

Thus, 1f {z;:} does not improve the forecasting performance of {z;;}, {z;:} does

not Granger cause {x;;}. If all variables in the VAR model are stationary, conduct

a standard F-test of the restriction

aij(1) = aij(2) = - - = ay(p) = 0.

Notice the difference between Granger causality and exogeneity: “{y;} Granger
cause {z: " refers to the effects of past values of {1;} on the current value of z,
and hence, Granger causality measures whether current and past values of 1; help
to forecast future values of {z}; “z 1s exogenous 1n the equation of 1" means that

7 1s not affected by the contemporaneous value of ;. Study the example
e
2t =2+ Pg1(0)ey: + Z Paai)e 2t
=0

Here {y;} does not Granger cause {z:}, but z; 15 endogenous 1n the equation for ;.

29



VAR: Block-Causality

Block-causality test: How to determine whether p lags of one variable (say, w;)
enter the equations of any other variables (say y; and z;) in the system. Whether

does w; Granger cause y; or !

First, estimate the y; and z equations using lags of ;. z: and wy = X,
Second, estimate the y; and z; equations only using lags of y; and z; = X,;

T hen, construct the likelihood ratio statistic :

(T —3p— 1) (log |Z,| —log |Z.]) ~ x*(2p).

30



VAR: Tests with nonstationary variables

[f the coefficient of interest can be written as a coefficient on a stationary variable,

a t-test and F-test are appropriate. even though other variables are nonstationary.

1). Consider a two-variable VAR model: {4} ~ I(1) and {z} ~ I(0)
Yr = anyr—1 + aiale—2 + bz + biaze o + &1
H.]:fz.”=[] Hﬂiﬂm:U Hﬂla”:ﬂ-m:{.]

2)_ Consider a two-variable VAR model:

Yt = anys—1 T anyi— +bu {y} ~ I(1) and {z} ~ I(1)
HD e = Eilg = 0.
3). We may be able to test Granger causality between two nonstationary variables.
Yt = V11T AY— 1+ 0128y 2 +011 A% 1 +012A% s+ C1oTs—1 +C11 A1 +C12 AT 2 +54,

where {y} ~ I(1), {z} ~ I(1), {z} ~ (1)
the test whether {z;} Granger causes {y;} 15 appropriate, but the test whether {z;}

Granger causes {y; | 1s Inappropriate. a1



Multivariate Structural VAR

1 bia bin L1t bio Y1 Y1z 0 Vim Tp—1 £1¢

bﬂl 1 o bin Lot bao Y1 T2 0 Van Tar—1 Eat
. = + +

bri Do 1 Tt bno Tri Tn2 " Van Trt—1 Ent

B:’It = ].—"U. -+ ].—11:4.-'11_-_1 =+ E4.

The reduced-form VAR is x: = B 'Tg+B Ty + B ls
— Ap+ Az +es. Ag=B7'Ty, 4, =BT, e, = B ',

2
/{Tl T2 f-Tln\

C_ oo On 03 o Oon . -1 -1 _ p-1 ! —1 _— p-1 r—1
Y = Eee, _ ] _ = EB 'g,B7 =B Elgey) BT =B E.B
Onl On2 (-Ti
var(e,) 0 0 Ao, A1, X, &
, 0 var(sy) - 0
2. = FEeie, = : : : B T, T, X_ &
0 0 var(ey)
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Multivariate Structural VAR

Ba; =T+ 1T 12: + 4. B I, I, ¥_ =
zy — B 'T'y+B 'I'z,y + Bl . ~ .
= Ag+ A1xs_1 + &, Ao, A1, 2, &
ol 01 - O
Y = Fee,= J?l g:; {T‘_?n (symmetric)
Ont Ona 7l
) 0 0 L by e b
5, = Beg = 0 var(e,) 0 B by 1 bay,

0 0 o var(ey) kbm by --- 1 }

the number of unknowns — the number of equations

_ n?_ é”(” +1) = é”(” —1)>0 the structural model 1s not 1dentified.

necessary to impose n(n-1)/2 restrictions on the structural VAR.

33



Multivariate Structural VAR

We only need to study e = B~ 'z and decide the number of the restrictions.

For example, for a three-variable VAR, a Choleski decomposition 1s

€1 1 0 0 E1e
easg | = a1 1 0 Eo4
Eas Ca] Caa 1 Eas
An alternative 1s
€14 1 0 caaz E1s
Eay = Caq 1 0 Eq
34 cg1 U 1 3¢
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Structural VAR: Overidentification

more than in(n—1) restrictions

Overidentification Test for an overidentified system:

Step 1 Estimate the unrestricted VAR: z, = 4o+ Ay +-- -+ A2, + e, Use the
standard lag length and block causality tests to determine the form of the VAR.

Step 2 Calculate the unrestricted vanance/covariance matrix £ and |XZ|.

Step 3 Restrict B and/or X, by the overindentifying restrictions and use MLE to
estimate the restricted VAR model respect to the free parameters in B and X.. This
will lead to an estimate of the restricted variance/covariance matrix, denoted as Zg.

Calculate |Zg|.

Step 4 Construct the test statistic |2 — |F5| — || ~ 2(R)

where E 15 the number of restrictions exceeding %n{n — 1). If the calculated value of y*

exceeds that in a \” table, the restrictions can be rejected.



