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Trend and Random Walk

“Trend”: permanent or nondecaving component of a time series. The trend has a
permanent effect on a series.

“Irend stationary”™: y; = yg + apt + A(L)z;, where A(L)s; 1s a stationary component
of .

AT . . t t . .

Nol trend stalionary™: g = yo + >_i_; =i + apl. >_i_y =i is a stochastic trend com-

ponent of y;:. Each =, shock has a permanent change in the conditional mean of {u:}.
t
Random walk model: y=w+) = Ys = Y1 + ¢, where =, is a white-noise.
i=l1

Nonstationary and Difference stationary An ¢, shock (i < t) has a permanent effect on y; and hence the forecasts for ;..

Ey: = Evy-s =, Cov(ys, Y4—s) = Cov (Z Ei, Zc;) = (t—s)o’,
- - i=l1 i=1
Var(y) = to*, Var(yes) = (t - s)0",  (t—s)r (1—s/t)"/?
Ety':‘.-l—l = EtUt+s =M. 8 > U Pe \'ﬁtﬂ—z yvff(t — 5)0—2 J

as 5 increases, p_ will decline, and hence the ACF for a random walk process will show a
shight tendency to decay. It 1s impossible to use the ACF to distinguish between a unit

roct process and a stationaryv process with a near-unit root.



Other random walk models

¢
Random walk plus drift model:  , — + Z £ + agt Ve = Qg+ Yoy + 22,
i=1

It 15 difference-stationary. Eiye s = 1y + ags.

Random walk plus noise model:

t
Ye=t+ Y &+ Y = ye1 + 22 + An,,

i=l1

where 7, is a white-noise with variance o>, and independent of =,_, for all ¢ and s; 1y, = 0.

It 15 Nonstationary but Difference-stationary.

t t—a
e Cov(ys, y-a) = Cov (Z“ i+ ) &t m—a) = (t-s)o?,
Var(y,) = ta* +0°, Var(y_,) = (t — s)o* + o i=1 i=1

" " (t—5)0”

B Vit + o2 f(t—s]03+031
n\ 1

By = Eyuo=1y, 50 Ps



Other random walk models

Trend plus noise model:

t
Yt :'U“+“ﬂﬁ+zﬁi+m Ye = Qg + Ye—1 + & + An,,
i=1
where 7, is a white-noise process with variance o and Esm,_, = 0 for all £ and s.

Nonstationary: a linear deterministic trend aot, a stochastic trend > _._, &;, and a pure

white-nowse 1,. It 15 difference-stationary.

(General trend plus irregular model:

t
w=w+at+y s+Aln, Y=oty t+e+AL)A,
i=1
where A(L)7, 15 a stationary process. Nonstationary: a linear deterministic trend agt,
a stochastic trend Z:zl £;, and a stationary component A(L)n,. Shocks to a stationary
series are necessarly temporary:; the effects of the irregular component will dissipate
and do not affect 1ts long-run mean level. But the trend components will determine the

trend of the y: proeess.



Remove the trend

1) Differencing:

t
U= Yo+ D i+ aot Ay =ag+e.,

i—1

t
y=yo+) &+ Ay, = g+ A,

i=l1

t
Y: = Yo +Guﬁ+zﬁi+'ﬁff Ay = ag + & + Any,
=1

U = Un+art+2s Ay, = ay+e—e4.

2) Detrending:

ye = ap + a1t + ast® + - - + ant” + &,

regressing {y:} on the determimistic polynomal time trend



Difference or Detrend?

e Difference or detrend? [nappropnate method to eliminate trend will lead to
a serious problem. (1) First-differencing the TS (trend-stationary) process will
introduce a nominvertible unit root process mto the MA component o the model.
Examine the example

A(L)y; = ag + ayt + B(L)=,.
Detrending yields a satationary and invertible ARMA process, but first-difference
deduces that

A(L)Ay, =a, + (1 — L)B(L)=;
of which the second term (1 — L)B(L)s; makes A(L)Ay: noninvertible. (2) De-
trending a DS process may not eliminate all the trend components (the stochastic

component of the trend). Study the general trend plus irregular model

t
Ye = Yo + apl + Z g; + A(L)n;.

i—=1



Spurious Regression

High R-squared, significant t-test,
but no economic meaning,
Examine the model:
Y = Qg + Q1% T €4,

where {1} and {z;} are two independent random walk processes, 1.e.

Yo = Y1 T Epr

It = I T E

with two mdependent white-noise processes =, and £...



Central Limit Theorem

CLT for a Martingale Difference Sequence: Let {¥:} be a scalar martingale
difference sequence with Y7 = (1/T) Y.L, Y;. Suppose that (a) E(Y?) = ¢? > 0 with

i
(1/T)Y.L, 02 — 0% > 0; (b) E|Yi|” < oo for some r>2and all ¢; (c) (1/T) Y., Y2 — o
mn probability. Then

1 I
— ) Y. — N(0,5%). n
ﬁ =1

Theorem (consistent estimator of second moment) Suppose
o0 O
Y, = E P us_; with E [¥;] < oo
=1 i=1
and {u;} 1s11.d. and for some r > 2. E|u,|” < oco. Then as T — oo,

T
1 _ .
= E Yeli—e — E (ysys—r) 1n probabihity. |

t=1



An Application: Limit Theorem

;iR{l} model y; = ayy;_1 + us with |EI.1| < 1. where {Hf} 15 1.1.d I{ﬂt‘Tg]

T -1 7
a; = ay + (ZI}:—L) Z:utyt—l-
i—1

t—1

E{“tyt—l]'z = EE:(“tEft—L:]Ehft—l]:EE[“ﬂyf—L]E(Eﬁ—l]g

Ly
i e 4 T E(uyi)” =
. + i a T 1 2
= JZZ_ a; ' E (u u,g_j):ﬁj‘zi:ﬁ =1 t=1 @i
i=l j=1 =1 1
., T
1 at 1 oc o2
\,.-""T - tit—1 ( 1— ﬂ%) T ; Ht—1 at—1 ; 1 1 — Hi;
s = 1
vI{a, —ay) = ( E yf_1> 7T E Ut Ys—1
=1 v t=1

fTZ - T {T_i T .
— (1_{1%) N (Uﬁl_ﬂ_z)zﬂ'mal_ﬂ%)- as I' — oo,



What is the limiting: AR(1) with a,=1°

Now study
Ve = 01 Yg—1 + £ a1 = 1,

where &; ~ i.i.d. N (U, 7*). 'he OLS estimator for a; satisfies

T(a, —1)= (L/T) Zf:] St
Y T

which is not asymptotically normally distributed. We will show that the asymptotic

distribution of T'(a; — 1) is related with Winner process.

Need Winner Process, etc
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Winner Process 1/4

Winner Process (Standard Brownian Motion) 117(-) is defined as a continuous-
nt

DRV, R PR
ting eacn aat

]

+ —~ I 11 24 PR P
Lz |U, 1] Wit tne sCalal

(
(ii) For any dates 0 << t; < t5 < -- < f; = 1, the changes
W) = Wit Wt = W], -\ [W(t) = W (k)
are independent random variables;

(iii) For any 0 < t < s < 1, W(s) — W (t) ~ N(0,s —t).

11



Winner Process 2/4

Notes:
1) For any t € [0, 1], select di > Osuch that 0 < ¢ —dt < 1. W{t)—-W(t—dt) =mn, ~
N(0,di) or
W(t) = W(t—dt)+n withn, ~ N(0,dt)

15 a random walk with the time-step dt.

2) Other continuous-time processes can be generated from standard Brownian mo-
tion. For example, B(t) = aW (t) ~ N(0,o%t), which is called as Brownian motion with
variance o?; Z(t) = W?3(z) ~ ty?(1).

3) W(t) 1s continuous but not differentiable in ¢t € [0, 1], where the distance of Wit,)
and W(ts) 13 defined as

d(t1.t2) = \/E (W () — W (t2))’

for any t,.#; € [0, 1] and t; > ,. The reasons are that. for any t, € [0, 1], df > 0,tq+dt
0, 1], Wity +dt) — W(tg) ~ N(0,dt), and hence

/
d(te.to +dt) = \/E(W(to+dt) — W(to))’
= /Var (Wi(ty+dt) — W(ty)) dt—0+ dt dt—0+ dt

— Vdt — 0. asdt— 0

dlte.to +dt) Jdt

lim = lim —— = .

12



Winner Process: Functional CLLT 3/4

(

0, 0<r<1/T
[Tr] /T, 1T <r<2/T

1 T
2N - oL +29)/T. 2/T < r<3/T
T2 xpm=) T AT

(e1+ea+--+ery)/T, (T-1)/T=r<1
(EL—FEQ—F"'—FETL’{I; r=1

\

[T] [T+]

) 1 T 1 -
VI r) = E £ = — 5 — N0, T‘UE) as T" — oo,
77 VT & VT /[TT] ; t |

-

|

VTXr(r)o=—— & — N, 7).
VIa i

Forany 1 = 7y =7 = 0. @(XT(TE) — Xr(ry)) o — N(0.ry — 1),

independent of T X7(r)/c, provided that r < r,.

The limiting distribution of /T X7(r) is the same as the distribution of the Wiener process B(r) — oW (r)

13



Winner Process 4/4

¢ Continuous Mapping Theorem: If 5r(-) — S(-) in distribution and g(-) 15 a
continuous function, then g(Sr(-)) — g(5S(+)) n distribution.

For example, since T X7(-)/0 — W(-), wehave VT X7 () — oW (-) and vT X7(r) ~
2
N(0,02r); S7(+) = (ﬁ;{r(-)) — W) [ VT Xp(r)dr — o [ W(r)dr.

e Stochastic Integral: fﬂl flr)dW(r)

1
/ AW = W(1) ~ N(0.1)
0

77 =1] ~ 3000 -1

| —

f 1 W(t)dW(t) =
/ 1 rdW(r) ~ N(0,1/3)
0

14



Theorem: Application to Random Walk 1/4

Theorem 1 Suppose that y; = y;—; + &;, where 5, ~ i.i.d.N(0,0?). Then as T" — o0,

T T
T2 oo — oW T3 gerer — o2 (W2(1) — 1)
=1 t=1 2
T 1 ) T L
TP tey —oW(l) -0 f W(r)dr T Z Y1 — T / W(r)dr
t=1 0 i=1 u
T 1 T 1
, _ A —9 2 2 172
T—2/2 Z tyi_1 — (T/ rWi(r)dr r Z Y1 — O L W=(r)dr.
t=1 0 t=1

15



Theorem: Application to Random Walk 2/4

Theorem 1 Suppose that y; = y;—; + &;, where 5, ~ i.i.d.N(0,0?). Then as T" — o0,

1 ZJtlt" ( (1)_1}

note that y? = (y,—1+2,)% = y2 | +c2+25,y,—1. Therefore,

16



Theorem: Application to Random Walk  3/4

Theorem 1 Suppose that y; = y;—; + &;, where 5, ~ i.i.d.N(0,0?). Then as T" — o0,

t=1

T 1
T 1
f - - —3/2 . . 1
T-3/2 Ztsf — aoWi(l) — r:rf W(r)dr T ;yt—l ﬂfﬂ W(r)dr

0

since

X_T (?") = {

(0, 0<r<yT
y/T. 1)T<r<2/T

T 1 1
T 2/T < 3/T .
?2"! HT =r<3) T-/? Z Y1 =f VT Xz (r)dr — f aW(r)dr.
: =1 0 0
Yy /T, (T —1)/T <r <1
yr/T, r=1

L.

T .
On the other hand, 1t follows from -3/ Z‘y:—l = T"gfz'gl + (51 + 52) + (31 + &9+ 33} ot (:’1 +t FT—l}-

T
= T—3f2 Z(T -
t=1

t=1

T

T
f) £ _ T-u‘z Z £ — T—ﬂ,-"z Z te, T—E,-';E Z;':Izl tst = T—];.I'IE ZE‘:L °t T_HIE Z‘tT:]_ yt—l
=1

=1
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Theorem: Application to Random Walk 4 /4

Theorem 1 Suppose that y; = y;—; + &;, where 5, ~ i.i.d.N(0,0?). Then as T" — o0,

T 1 . ! r D
T3ty — o / IV (r)dr T 4y — 0 A W2 (r)dr.
t=1

T

0 =1

4/

f(:;'.1 TigT e '|':t_1]l
r'tJ-"II

T [:[TT: + 1)[::.1 S -I-:[T“::]di"

it-1)/T

t=1

5

t—11/T

T”Ztytl—T”Zf ([Tr] + 1) Xz (r)dr

(t—1),/T

T /T r _
_ Z/ -TT]+l\f"T)i'T(r}dr=j RN AR
¢ o T 0 1

1

— o | rWirjdrasT — .
Jo

(\f?XT(T‘:]jE dr = fnl (1.-'TXT[T))E£ET

18



Application to Regression Models

Theorem 2 Consider the followning three models:

Model 1 = a1yjs—1 + 54, ay = 1;
Model 2 © wyi=apg+ a1ye—1 +5¢. ag =20, a; = 1;
Model 3 © wm=an+a1s—1 +0t+5:. an=0, ay =1. 7= 0.

(1) In Model 1, the data are generated by a random walk: 7 = 15— + &:, but the
model 15 estimated by OLS: y; = a,4:_; + ¢. The OLS estimator for a, satisfies that

! 3 17 1172 LY.
T(a, —1) — IR 111 (?r")dﬂ () _ l(l_r) . 1)/2
Jo W2(r)dr [T W2(r)dr

(11) In Model 2, the data are generated by a random walk: y; = ;| + ¢, but the

model 15 estimated by OLS: 4 = ag + a1y:—1 + ;. The OLS estimator for a, satisfies
that

[ W (r)dw (r) |

T(a — 1) — -
6 —1) [ W2 (ridr

where W (r) = W(r) — Ll W(r)dr 1z the demeaned Brownian motion.

19



Application to Regression Models

Theorem 2 Consider the followning three models:

Model 1 = a1yjs—1 + 54, ay = 1;
Model 2 © wyi=apg+ a1ye—1 +5¢. ag =20, a; = 1;
Model 3 © wm=an+ a1 + 0t +5:. an=0, a;, =1. F=0.

(11) In Model 3, the data are generated by a random walk: i = y:—y + <;, but the
model 15 estimated by OLS: i, = ag+ay3—1 + 9t + ;. The OLS estimator for a; satisfies
that
[ W (r)dW (r)

fo We2(r)dr

where W*(r) = W{r)—4 ( [EW (r)dr — & [! ru-»-'(r}dr) +6r ( [ Wirydr —2 [ rl—’["(r)dr)

15 the demeaned and detrended Browman motion.

20



Limiting Distribution ot t-Statistic

Model 1: Under the null: a; = 1, the OLS estimator a, 13 a consistent estimator,

and hence
1 T
P ~ 2 2 - N
0o = E Yy — 1 Ys — ° 1n probability.
T T _1 - (Ji' 14+ L} P ]
Then
o oap—1 ! ZS‘:L Ui—15¢
fT — —

s-e-(an) f"\fff'T_z > Vi
1WA —1) [y W(r)dW(r)

vacr? fnl W2(r)dr - f fﬂl W2(r)dr

The t-statistic converge weakly to a functional of the Brownian motion with asymmetric

limit distribution.

21



Limiting Distribution ot t-Statistic

Model 2: Under the null: a; = 1.

] [y W (r)dw (r)
T s.e.(al} vl."fﬂl ﬁ-"’g [:T‘:de’

Model 3: Under the null: a; — 1,

a—1 [ Wr(r)dw(r)
sela) /Wi

22



OLS estimator for other random walks

¢ Random Walk with a Drift: What is the Limit Distribution of the OLS

Estimator for the autoregression?

Consider the following random walk plus drift process:

Y = Q1 Ol—1 T E¢.

where a = 0. p = 1. and =; 15 1.1.d.

23



OLS estimator for other random walks

¢ Random Walk with a Drift: What is the Limit Distribution of the OLS

Estimator for the autoregression?

Consider the following random walk plus drift process:

Y =a | pyi—1 | S,
where a == 0. p = 1. and =; 15 1.1.d.
¢ Example: Suppose that the true model 15 a umit root process with a constant
Y = o+ Ypoy U, (10)
where u; are 1.1.d.{0, ETZ}. However, we use a Trend-Stationary Model
Yy = ¢+ [t + (11)

for the estimation of /3. What is the limit distribution of the OLS estimator /7
What happens to the conventional t-test for /= 0 in Model (11)7

24



OLS estimator for other random walks

¢ Random Walk with a Drift: What is the Limit Distribution of the OLS

Estimator for the autoregression?

Consider the following random walk plus drift process:

Y = Q1 Ol—1 T E¢.

where a = 0. p = 1. and =; 15 1.1.d.

25



Unit Root Tests

1) Dickey-Fuller (DF) Test: The three basic models used for regression

Model 1: Ys = PUYs—1 T+ E¢,
Model 2: Ut = Q + PYi—1 T+ Et,
Model 3 Yy = a + 0t + py_q + 4.

can be equivalently written, respectively, as

Model 1: Ay = YY1 + &4, (12)
Model 2: Ay = a + YY1 + &4, (13)
Model 3: Ay = a + 0t + 7y + & (14)
Model used for regression Null Hypothesis Hy | Test Statistic
Model 3: Ay =a+ 6t +71p_1 +2c: | 7=0 T,
v=6=0 g
Cl (",' U rfJ2
Model 2: Ay, = a4+ vy + 24 ¥ = U Tu
a=7=10 @,
Model 1: y; = pys_1 + =4 ~=10 T

26



Unit Root Tests

Note: Problems:

(1) For :, AR(p)?

(11) For the error term, MA(q)?

(111) When to include the constant or time trend in the regression model?
(1v) More than onc unit roots?

(v) Structural change?

2) Augmented Dickey-Fuller (ADF) Test (Said and Dickey test): Extend
the DF test to ARMA(p,q) models

Ye = @1y + - Qple—p + 5 T 015 -+ bgE g

or
1-AL)yp=(1l—-aL— - —a,L?)yy = (1 +b L+ -+ b,L%zs = B(L)z;

e A Four-step Test Approach: when the form of the DGP is completely
unknown. See Enders’s book: P213 Figure 4.13. Note that 1) Plotting the
data 1s usually an important indicator of presence of deterministic regressors; 2)

Theoretical consideration might suggest the appropriate deterministic regressors.
See GDP ard Unmit Roots example on P214. 27



