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An Example: VAR or VEC ?
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uy; and U uncorrelated white noice processes.

Both ¥,; and ys; are 1(1) processes:

Uy — Uy g—1 + TU
Ut

( Ut ) = ¥(L)y,  noninvertible
Ut




Long-run equilibrium and Cointegration

. - - i i 3
Long-run equilibriuvm: 3,z + (29 +--- + 3,2, = 0 or Jx; = 0,

- 1 — [ fa f f - . !
where 3 = (3,39, - ,3,) , x¢ = (@14, Tag, -+, Tnst) .
Equilibrium error——the deviation from the long-run equilibrium: 'z; = e;,

where {e;} is stationary.

Cointegration: If z; ~ I(d) and y; ~ I(d). it is generally true that z; — ay; ~ I(d).
Further, when z — ay; ~ I(d — 1), we say that z and y; are cointegrated. More

tormally, the components of vector x; are said to he Cointegrated of order d.b.

o

denoted x; ~ C'I(d.b). if

1) all components of z; are I(d);

2) 3 a vector 7 = (/3;./35,- - .3,) # 0 such that the linear combination [#'z; =
Gy + yzoe + -+ + 320t ~ I(d — b) where b > 0,

The vector /7 1s called the cointegrating vector., which represents the long-run

equilibrium relationship among variables.



Long-run equilibrium and Cointegration

Remarks: (1) Cointegration refers to a linear combination of nonstationary vari-
ables. (2) The cointegrating vector is not unique: the set of cointegrating vectors con-

stitutes a vector subspace satistying 3,1+ + (Foxor + - - - + 3 2 ~ I(d — b); that is,
{B=1(0,,89,,0,) € R\{0} : f'zy ~ I(d —b)}

When /7 is a cointegrating vector, A/7 is also a cointegrating vector for all A # 0. A nor-
malized integrating vector is /5, = (1, 3,/3,,--- . 3,/0,)" if 3, # 0. There may be
at most n — 1 linearly independent cointegrating vectors. The number of linearly inde-
pendent cointegrating vectors is called the cointegrating rank of z;. (3) Convention:
Here assume that x; ~ C'I(1,1) s.t. 'z ~ I(0).



Cointegration: Example 1

Money demand is proportional to the price level; as income increases, imdviduals
will want to hold increased money balances; moneyv demand is negatively related to the

Interest rate.

ﬂ?t f— I.l'l/-j‘[:. —|— ,-"f:})lpi —|— I.'f]}zyt —|— ;‘Iﬁj}s?’t _|_ Et

where m; is the money demand ( = supply, in equilibrium), p; is the price level, y; is the
real income, r; is the interest rate, and e; is stationary disturbance term. Here (3, = 1,
[y > 0 and (3 < 0 by the behavioral assumptions. When all the variables are I(1),
(11, pt, Y, )’ 1s cointegrated with a cointegration vector (1, —3,, —/3,, —/33)".

Also, suppose that the monetary authorities followed a feedback rule such that they
decreased the money supply when nominal GDP was hieh and increased the money

supply when nominal GDP was low. Then

me = = (e + ) + e
= Yo — V1Pt — V1Yt +0 -1 e

where e, is stationary. Then (my, p:, ys, 7¢)" 1s also cointegrated with another cointegra-

tion vector (1,v,,7v,,0)", which is linearly independent of (1, —/3,, —/35, —/33)".



Cointegration: Example 2

PPP: P, = S5; P or taking log, p; = s+ + p;.

Each of the three variables p;, s, and p; is I(1).

A weak version of the hypothesis is that the variable =z, = (p; — s — p]) is

stationary, i.e. (p;, s¢, p})  is cointegrated with (1, —1.—1)".



Cointegration and Trend: CHO6-ex1:
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where 4 = M +U;.
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Cointegration and Trend: CH6-ex2

Graph for three random walk plus
noise processes

Vo = Hy 60 T = My T80 W = Hhy + 8
where f, =ty + Uy
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Cointegration: Purge the trend

Consider the vector representation: Iy = [l —+ &y
where x; = (214, -, Zpt)'s e = (Mysy -+ - 5 [yye) 18 the vector of stochastic trends, and e;
1s an 1 X 1 vector of stationary components. If one trend can be expressed as a linear
combination of the other trends in the system, i.e. there exists a vector 3 = (3,,---,[3,)
such that 'y, = 0, then 'z = ('e; ~ I(0). That is, x; is integrated with (3,,---,3 ).

SUuppose £y, £.¢. Ewt, £¢ are 1.1.d. white noise processes, and

Yy = jufyt + Eyts ~t — M4 + Ext, W — M, 4 = Eawts

oot Myt 1 T Ets Hop = Mot T &ty Moyt = Moy T Hog-

Then y; + z— w; = Eyt T E2t — St ™ iT(U]a re. (1,1, _1) ('Ut: St 'wt)’ ~ I(U)* (Yes 52, 'wt)f 15

integrated with (1, 1, —1)”. Here the stochastic trend in the cointegration is also purged.



Cointegration and Error Correction

An example: Term structure of the long- and short-term interest rates.

&TSE = L.I'S('?"Lt_l — ,.HTSt—l) + ESts g = U

Arpy = —arp(rpe—r — Brse_1) + €1+, ar > 0

where rg; and r7; are the long- and short-term interest rates, and c£g; and c7; are white-
noise disturbance terms which may be correlated. The long- and short-term interest rates

change in response to stochastic shocks (¢5; and 1;) and in response to the previous

period’s deviation from long-run equilibrium (rp,_; — Grg,_).
Ars: = as(rpe—1 — Brse—1) + E ayy (i) Arge—; + E a12(2) Arre_; + S5,
Arpy = —ap(rpe— — Orsi—1) + E asy (1) Args_; + E aso(2)Arrs_;i +cre.

This is a bivariate VAR in first difference augmented by the error-correction trems
as(rre—1 — Orse—1) and —ap(rre—1 — rsi—1 ). as and «f have the interpretation of speed
of adjustment parameters. The larger ag is, the greater the response of the previous
period’s deviation from long-run equilibrium (rz:—; — Frgi—1).

10



Cointegration and Error Correction

The vector x; has an error-correction representation if it can be expressed in

the form

Axy = mg + e + T Axs | + T Axy o + - - -+ TR Az, + 5

where o = (Ti0)nx1s T = (Tik)nxn F 0, Ti = (Tjkl))nyn.t = 1,2,- -+, p. The compo-
nents in the error term vector z; = (), may be correlated with each other, but are
stationary. Suppose that x; ~ I(1). Then

mTax;_q1 1s stationary. Each row of 7 1s a cointegrating vector of x;.

It 7 = 0, the model is a VAR in first difference of x;. There is no error correction term.,
implying that Ax; does not respond to the previous period’s deviation from long-run

equilibrium (or disequilibrium error).

It m £ 0, Az; responds to the previous period’s deviation from long-run equilibrium

and estimating r; as a VAR in the first difference by omitting the error correction term

Tx: 1 1s Inappropriate.

11



VAR(1) and CI(1,1)

Yt = a1le—1 T @122¢1 + Eyt ) Ay = (a1 — D)yp—1 + ar2ze—1 + 5
. . -~ ~ Az = a1 + (aoe — 1) 241 + 4.
2y = a9 Y1 + o9z + 54 t 21Yt—1 (g2 )2t =t

U — (J- — aZQL)Eyt _I_ alZLEzt Nt _ a?lLfyt _~_ (1 — a’l]L)Ezt
- (I —anL)(1—agpl)— ajay L? (1 — a“Lj(l _ GQQLJ — g9ty L2

)\2 — ((.111 -+ ﬂgg)}k -+ (ﬂllﬂgg — ﬂlgﬂgl) = 0. *}'ll and /"\2.

When are yt and zt CI(1,1)? _ ( ap; — 1 @12 )

(o oo — 1
Lemma: 21 22

1) If aj2 = a2, = 0, then y; and z; cannot be C'I(1,1).
2) If a;; = ag2 = 1, then y; and z; cannot be ("I(1,1).
3) If y; and z; are C'I(1,1), then det(w) = 0 and rank(w) = 1.

12



VAR(1): Conditions for CI(1,1)

Ay, = (a1 — L)ye1 + arpze1 + 5y
Az = a9y + (ag2 — 1)::5,—1 = €t

Discussion for Ay, Ay for {y;} and {z} to be C"1(1,1) :

1) It A; and A lie inside the unit circle, {1:} and {z;} are stationary and cannot be
integrated of order (1,1).

2) If either of A; and s lies outside the unit circle, the solution is explosive. Neither
variable 1s difference stationary and so they cannot be C'I(1,1).

3) It both \; and )y are unity, {1} and {z} are I(2) and cannot be integrated of
order (1,1).

4) For {y:} and {z:} to be C'I(1,1). it is necessary that A\; =1 and |X\o| < 1.

13



VAR(l) Granger Representation for CI(1,1) 1 / 4

-ﬁi{;’t — (l'lll — 1)3‘;}_1 + Q1921 + Et (oo
Az = a9y + (aga — 1)«3&—1 -+ E¢- an =1 — 1 — C‘r:gg.
.
) A-Uf. — _%yt—l + @19%+—1 + Eyt = —'5;'1_2_:;?21 (yi—l . l;;gz :i—l) 4+ Eyt
\ Az = anyp—1 + (a2 — 1)3-%—1 + £ = A2y ('.Ut—l - 1;;22:;3_1) + .

Ay Qv ) £
(2%) = (&) ommmam+ ()
Cy . U — =
— ( Y ) |[l.. _?l) ( Je ) + ( ut ) — El..-"?fift_l —|‘ £y
(X Tt—1 ot

r
where av — | —422L g, ) , 3 — (1, —1=22) with rank(3) — 1.
|l —ags - L ’ a2l

14



VAR(l) Granger Representation for CI(1,1) 2 /4

1) Here 3, = =222 £ 0. {yz—1 — 312¢—1} is stationary and y; — 3,2 = 0 is the

21
long-run equilibrium. The normalized cointegrating vector is 7 = (1, —3,)". We can see

that 7, and z change in response to the previous period’s deviation (;_; — 3,2, ) from

the long-run equilibrium 1 = 3,z. Also, at least one of adjustment speed parameters
a, = —%15%2121 and a, = a9, is not equal to zero, meaning that the adjustment in the

system plays a role in the response to the deviation. In the long-run equilibrium (there
is no deviation), 1 and z; change only in response to ¢, and £, shocks,

2) Granger representation theorem says that error correction and cointegration are
two equivalent ways in representing C'I(1,1). C'I(1,1) guarantees the existence of an
error-correction model and an error-correction model for 7(1) variables implies cointe-
gration.

3) Here, a cointegrated system can be viewed as a restricted form of a general VAR
model: z, = af'z,_; + & with rank(3) = 1. It is inappropriate to estimate a VAR
of cointegrated variables using only first differences but ignoring the error-correction

portion of the model.

15



VAR(l) Granger Representation for CI(1,1) 3 / 4

4) It rank(m) = 0, we have a;3 = ay, = 0,a;; = as = 1. Then Az; = & or 7y is
not C'I(1,1). If the variables are cointegrated, the rows of 7 must be linearly dependent,
and hence det(m) = 0 or the rank of 7 is 1.

5) In general both variables in a cointegration system will response to a deviation

from the long run equilibrium. Possibly, one of the two djustment speed parameters

a, and a, (not both) may be equal to zero. In our stated case a;3 = 0 such that
Qy = —?_222 = (. That is, the change of {1;} does not respond to the discrepancy from

long-run equilibrium and {z:} does all of the adjustment:

Ay =0 (-1 — Brz-1) + 2 enli) Ay + 2 cia(i) Az + 2y
Azt =0 (Ye—1 — Fr2e-1) + 20 ea1(i) Aye—i + 3 Con (1) Azgmi + 22t

This means that {y;} is weakly exogenous. Estimation and testing can be conducted

only for {z;} without reference to the model for {1;}.

16



VAR(l) Granger Representation for CI(1,1) 4 / 4

6) Granger causality in a cointegrated system is reinterpreted: {1;} does not
Granger cause {z} if lagged values Ay;_; do not enter the Az equation and if 2
does not respond to the deviation from the long-run equilibrium, that 1s, 1f a, = 0 and

all ¢g1(2) =0 in

Ay = ay - (-1 — F12e-1) + 2o (1) Ay + > c1a(i) Aze—; + £y
Az =a, - (Y1 — Brz1) + 2o e (1) Ay + X0 en(1) Az + e

17



VAR(I]) Granger Representation for CI(1,1) 1 / 2

Ly — Alift_l —+ £t
where z; = (214, Tog, -+, Tpt)', €t = (168060

Ar; = (Al —1)xy_ 1+ 54

- Eﬂ.t)!: ?:’d(Un Q)’

= TXi_1 + &t

The rank of 7 determine the number of cointegration vectors. For example,

1) rank(m) =0: 7 = 0 and Az; = ;. All the sequences {z;;:} are unit root processes
and there 1s no linear combinalion ol the variables thal is stalionary. Hence a; <
C1(1,1).

2) rank(mw) = n : det(w) # 0 (there is no unit root) and each row of mz;_; = (U is an

idependent restriction on the long-run solution of the variables. Each of the n varables
in x; must be stationary with the corresponding long-run value constrain in 7x;_; = 0.
Hence z; » C'I(1,1).

18



VAR(I]) Granger Representation for CI(1,1) 2 / 2

3) rank(m) = 1 : there is a single cointegrating vector given by any row of 7, e.g. for

Az = 1 (T1e—1 + P1aTot—1 + -+ B1,Tnt—1) + E12s

the normalized cointegrating vector is (1, 35, -, /3, )", where 3., = m;;/m;, and the
speed of adjustment parameter 1s m1;.

4) rank(m) = 2 : Assume, for example, the first two lines of 7 are linearly inde-
pendent. The two cointegration vectors are (71,72, - .T1,) and (Mo, Tag, -, Ton)

without normaliztion. In the long-run equilibrium, the cointegrated variables {zi;},
{xat}, - ,{xn:t} satisfy the two relationships:
&y + TeZor + - + Tipne = 0
To1Xys + Moolop + -+ + MLy = 0.
5) 0 < rank(m) = r < n : there are r cointegrating vectors and n — r stochastic

trends in the system.

19



Test for Cointegration: Engle-Granger 1/5

Consider the linear regression model
ye = 2,0 + e
where the k x 1 vector 2 ~ I(1) and elements of z; are not cointegrated. Further, assume
€t = (1€ T Ut

where v; ~ I(0). Testing the null
HD L = 1

amounts to testing the null of non-cointegration of y; and z;.

The Engle-Granger method has the following shortcomings:

In practice, it is possible to find that one regression indicates that the variables are cointegrated.
whereas reversing the order indicates no cointegration.

€4 is carried into the estimation of a; and the no-cointegration test, 0



Test for Cointegration: Engle-Granger 2/5

Four steps to test for the cointegration of 17, and z; :
1) pretest each variable Lo determine its integration order (Augmented Dickey-Fuller
test infers the number of unit roots). If the two arc stationary, it is not necessary to

proceed. If they are integrated of different orders, they are not cointegrated.
2) Estimate the long-run equilibrium relationship. If the above test indicates that
both ¥ and z; are I(1), estimate the long-run equilibrium relationship:
Y = Og + G2 + €.

Conduct unit root test for the AR(1) model of the above residuals é; :
,AE:-lr; p— ﬂ'lét—l —+ Et, Hﬂ s = 0

P

Aer = a16:1 + E ai+1Aeé;—; + &, Ho:ar =0 (no cointegration)
i=1

Here the critical values for the test are provided by Engle-Granger

in Table C at the end of the text 21



Test for Cointegration: Engle-Granger 3/5

3) Estimate the error correction model. Use the saved residuals from the equilibrium
regression (4) as the deviation from the long-run equilibrium and estimate the following

error correction model

Ay = Qp+ Qyéq T Z 1 (1) Ays—i + Z 12(2) Az + Eye
i—=1 i=1

Az, = az+a,e, g+ Z oy (1) Ayy—; + Z Qoo (1) Az + €.
i=1 i=1

which constitutes VAR in first difference other than the error-correction term ¢€;_;. This
can be efficiently estimated since each equation contains the same set of regressors. Since

all terms are stationary, t-test and F-test are appropriate.

22



Test for Cointegration: Engle-Granger 4/5

4) Assess model adequacy.
(1) Estimate the error correction model by adjusting the lag lengths such that the

residuals of the error-correction equations approximate white noise. If you need to allow

near- VAR using the SUR method.

(ii) The speed of adjustment coefficients o, and a, are of particular interest in

that they have important implications for the dynamics of the system. Some cases
A ta tha .r']-r:‘n
L wvwr UL

* "
+1nn Frmin
LiLs CLUIA ALl Liwrill

|__|

are in =0t
the long-run equilibrium in (¢ —1): if @, = 0 and all as(2) are equal to zero, { Ay, } does
not Granger cause {Az }.The estimales o ay and/or a, should be significantly different
from zero if the variables are cointegrated. Moreover, the absolute values of a, and a,

must not be too large.

23



Test for Cointegration: Engle-Granger 5/5

(ii1) Impulse responses and variance decomposition analysis can be used to obtain
information concerning the interactions among the variables (some method, such as
Choleski Decomposition, must be used to orthogonalize the innovations), which can
indicate whether the dynamic responses of the variables conform to theory. The impulse
responses of {Ay;} and {Az} should convergen to zero. You should reexamine your
results from each step if you obtain a nondecaying or explosive impulse response tunction.

(iv) Generally, it is inappropriate to use t-statistic to perform significance tests on
the cointegrating vector: 1 = 2,7+ €; since the coefficients are super-consistent but the
standard errors are not. See Textbook: Appendix 6.1 on P378-380. The exception is
the case that the residuals from both equations are serially uncorrelated and the cross-

correlations are zero, i.e. the cointegration relationship between {1;} and {z;} is such

that 4, = 3, + 5,2 + €12, cov(E1s,£15) = 0, cov(car,695) =0, # 5

Az = ene cov(ere,e20) = 0,71, .



Engle-Granger Test: Example

Example: see Chb-exi. Test the cointegration of 1, 7 and w;. where the data are

senerated from

Ut = flye Oy flye = flyz 1+ Eyty Opp = 0.50y21 + 7y
% = g — 0+ 0304, = Hiz_1 T Eats Ozt = 050,41+ 7,

where £y, 1,40 £2¢,7, and 1, are all white noise processes. The true relationship is that

(Y. zt. w ) 15 cointegrated with a coinegrating vector (1.1, —1)".

25



Test with 1(2): Multicointegration 1/2

Multicointegration:
A linear combination of 1(2) and I(1) variables is
Integrated of order zero.

Suppose that xy; and @5, are I(2) and that z is I(1). Three cases:
(i) 2y and @ ave CI(2, 1). 1t — [o®as — Y12t 18 I(U).

(i) 1 and @9 are CI(2, 1). T4 — [yTos — o Azgs — V2 18 I(U).

(iil) z1; and 9 are CI(2, 2). a1 — [Foaey — 0 - 2 1s 1(0).

In principle, check for multicointegration using a two-step procedure: First find a
cointegrating relationship among I(2) variables and then use this relationship to check
for a possible cointegrating relationship with the remaining I(1) variables.

26



Test with 1(2): Multicointegration 2/2

Engsted, Gonzalo znd Haldrup (1997) show that this procedure is effective only
1f the cointegrating vector for the first step is known. Otherwise, the second step 1s

contaminated with the errors generated in the first step.

2 - s
T = ag + a1t + ast” + Foxos + Fawar + v Axoy + VolAwa + 12 + €4

where x;, 29, and z3, are I(2),and z is I(1).

p
\e \Ng. - ‘2 o AG. test the null p =0
i=1 Rejecting — multicointegration

critical values of this t-statistic for the null p = 0 depend on the sample size, the number
of 1(2) regressors (mo = 1 or 2), the number of I(1) regressors (m; = 0 to 4). and the

form of the deterministic regressors. See Table D on P442 of the Texthook.
27



Forms of Models for Cointegration 1/4

Johansen test: Generalize DF test to the vector.

Some forms of the models for the cointegration test:
1) The model without a drift is
Model 1 : xy = Ajzy_1 + ¢ or Axy = Ty + &4,

where 7 = A, — I. The rank of 7 equals the number of cointegrating vectors

-

Pty ot oV Es Ao e e e i ewn Ve Tataturall

Model 2 : oy = Ag+ Ay + ¢4 or Awy = Ay + ey + 4.

28



Forms of Models for Cointegration 2/4

3) Include a constant in the cointegrating relationship
Model 3 - e.g. assume that rank(m) =1 and a;0 = s;a0

Az = (?Tllilflt—l + T12XT9—1 + - - + TinLnt—1 + alg) + 14

Axyr = s9 (Tnai—1 + Ti2@2i—1 + -+ - + Tin@ne—1 + aro) + €2
Axyy = 8, (T11Z12-1 + T12%ar 1 + - - + Tinlanr—1 + am) + &,
tay - 7 * = . 1\ ¥ _ [ :

Cenerally, for 1 < r < n, ™= aff ,where o and [ are two n X r matrix with s ank([1) =r.

Az = Ag+rmeig +ep=a(fy+ Fo) +e

: - Li— ¥ #
= a(4, 5y ( tl l ) & =T X T &t

The linear trend is purged from the system. 29



Forms of Models for Cointegration 3/4

4) Include an intercept term in the cointegrating vector along with a drift term: e.g.
assume that rank(m) =1 and s;b,o + b;; = a;9,then
Model 4 : Az = (m11@16-1 + T12@2e 1+ -« + TinZpe—1 + b1o) + b11 + 11
Axgy = 89 (m11&14—1 + T12@2:—1 + - - - + T1n@ri—1 + b1g) + b2y + =24

Az = s, (T11X161 + T12T2 1 + - -+ + Tin@ne—1 + b10) + b1 + s

® 3 s ] ¥
Generally, for 1 < r < n, 7 = «a/f ,where a and 5 are two n X r matrix with
rank(3) = r. If Ay has a decomposition: Ay = (Ag —af3;) + a3, where 3;isal xr
V) 0 1 5 0 — 40 Mo/ T B g, o

matrix. then
3 A el _
Az, = Ag+mei | +e=(Ao—afy) +a(fy+ Fxi_1) + e
= Al +7'xl | +&y

. _ . Lr—1
- _ el * ol —
where Ay = Ag —affy, 7" = a (.-‘ff 7/ iU)’aHd L1 = ( )

30



Forms of Models for Cointegration 4/4

5) Higher-order AR process:

Model 5: xy = Ayxp + Asxy o+ - -+ Apzyep + &4

p—1

or Ary = mx, 1 + E T, Az, ; + e
i=1
wherer =) i A, =T ,mi=—3"_, 4

if 1 < » = rank(m) < n, mcan be decomposed as | 7 = /3

where o and (3 are two n x r matrix with rank(/3) = r.

3’2z, = 0 is the long run equilibrium.

31



An Example on Drift and Intercept

1

[ﬂL] {-0.2 0.2 ”LA] [%l
= + 0
Az, 0.2 -0.2/Lz 1 lg,

0yy=ax=0.1

0 20 4 & %

() H#HR

100 0

(@) EHEFTRTR
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Concentration of Likelihood (No drifyy 1/4

Likelihood ratio test of cointegration rank for Model 5 (No drift):

p—1

Axy = wr,_y + E mAx;_;+e;  where e, ~ #WdN(0,Y)
=1

t — 1.2, -.-. T, Xi—p, -, Xo are given constant vectors.

Likelihood function:

—nT T 1
In L(xy, 29, -+ , 27, M1, Moy -, Tpe1, T, 1) = ! In(27) —=In|X| — = Zeizi_lef.

(i) Concentrate In L with respect to ¥ : by & = = Zi | 1€},

T
E e .
t=1

] 1
In " (21, 22, - -+, xpi T, T2, - - :?Tp—laﬂ-) = C — ?111

33



Concentration of Likelihood (No drift) 2/4

(i1) Concentrate In L™ with respect to my, ma, - - - , Tp_1.
)
Let ¢ = (Axiy, Axy_o, - -- :&xt—r—l—l) s
p—1 p—]

Ro: = A — Z T Az th = L1~ Z ?T-iAtTt—i

t=1 t=1
T o ( A
(7m0, 2 Tp—1) = ( 9: 9, %_1%)
t=1 \t:l
T T
1 !
In L (11,:1?2: . LT TT) = ( 0— ;11"_ (R[]t — R]t) (R{}t — LRH)
- t=1

(‘\' L Tl L L ! —_ !
00 E H|SUU TS0 Sp1 T —|—;1511; |
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Concentration of Likelihood (No drift) 2/4

Alternatively,

By Anderson(1958)’s canonical correlation analysis, if let 7; be the canonical cor-

relation of the residual series Ry and Ry;, —1 < r; < 1. we have

i

T
o1 r
min | Z (Rot — mRy;) (Rot — mRy) | = H(l -\
t=1

i=1

with A; = *F?? 0 < A < 1, So when 7 1s not restricted, the minimum value of In L** (), @y, -+, &} 7
15

T T
lI"lLﬂ(ifhifg, v ,:ET;ﬁ'} = Cﬂ - ?Z]I’l(l - }\l}
T =l
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Concentration of Likelithood (No drift)y 3/4

(iii) Imposing the restriction m = a7,

| T | | |
In L™ (zy, 29, ,27; 0, 3) = Copg — B In|sgp — aft's10 — se1a’ + afF'sy fal|.

FOC:

dln L™ (xy, 9, - - ,o7; 0, )

o

. o oy —1
= 0= a = 5913 (75 1;")‘) ,

, I r . . |
InL™ (ml, ro, - ,IT; ,i"f) — (?1 — 5 In ‘Sgg‘ — 5 [n {f’f! (S“ - 5108001 5‘[]1) Hf} .

minimize }.,.-“"'f" (511 — SmSD_DIS[“) f‘f}

(8)

subject to 3’53 = 1.
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Concentration of Likelithood (No drift)y 3/4

minimize ’.,.-“”f" (511 — slgsaﬂlsm) ,:"f}

(8)

subject to 's, 3 = 1.

Anderson (1958) shows that the above problem is equivalent to solving /7 in the equation
I:,)\S” — Smﬂﬂ_ﬂl .‘:':*[}1).,-"1a =0, [\9)
where ) is the root of the characteristic equation = |AS11 — 51u56u1501| = 0. (10)

[t has n roots equal to A; = r7. Order them in A\, > --- > A, > (. Correspondingly.

the r:haracteristif vectors are V1. V5., 1},. Choose _,'Af = (11, Va, - Vi), where r =
rank(3). Then /3 is the solution to (8). And the minimum value of In L***(zy, 29, - - . 27; )
1S

In L™ (zy, 29, - .27 J | ——Z (1— N\ (11)



Concentration of Likelihood (No drifty — 4/4

I}‘Sll — S]uSEUISull — [\, (10)
(iv) Suppose rank(w) = r. Order the characteristic roots of (10) such that A, >
A =2 A > 0and A,y = = A, = 0. If the vanables in 2; are not cointegrated.
rank(r)=0.all \; = 0andIn(1-X;) = 0. If rank(7) = 1.0 < Ay < 1, thenIn(1-X,) < 0
and In(1 = A;) =0 for i =2.3.--- .n. It is deduced from (11) that the maximum value

of the likelthood function 1s given by

T

In "™ (zy, 29, -+ yxpir) = (O — ;h‘l

& f s
| 1.\

. T
= 11—22111(1—,&)1

i=1

where I\ 15 a constant related with n and T.



I Johansen’s Method:

Calculate the characteristic roots and vectors

Take z; = Ayzey + Agmyg + -+ + Apze, + € as an example. Write

p—1

Ax; = T + Z T Az + e

=1

wherer=)" A -1 m=
cointegrating vector.

Step 1: Estimate the VAR 1n first difference: Az; = Zf;ll B:Ax;_; + ey

Step 2: Estimate z;_; = Zf;,l CiAx_; + ey

Step 3: Compute the squared canomcal correlations between eg; and ey, A;. That 13,

- ?:i .1 A;, and rank(r) = the number of independent

calculate \; as the solution to [As;; — 510500 so1| = 0, where s;; = % Z:T:| ei€ir,1,] =0, 1.
Step 4: The maximum likelihood estimates of the cointegrating vectors are the non-

trivial solutions to A;s11/3; = $105q S01/;.



Test for Cointegration: Johansen (No drift) 1/2

1) The first statistic tests the null hypothesis that the number of distinct cointegrating

vectors 1s less than or equal to r against a general alternative. That 1s, to test

Hg :rank(m) <r (that is, \,j;=---= A, =0)
against Hy : rank(w) > r (i.e. at least one of \..y,---, A, is not equal to zero).
T ] T n
i L N L=K—2S"In1-\)
L =K -3 ;111(1 ) > ; ( )

the trace-statistic )\t..,.acﬁ(-r) D Mrace (1) = =T Z In(1 — )\,)

i—r4-1

When all \; = 0, M\rgee(r) = 0; The further the estimated characteristic roots are from

zero, the more neagtive 1s In(1— )\4) and the larger is the trace-statistic Ay qee (). Critical

values of Ai.qce(7) are obtained by simulation, see Table E in Enders’s textbook.
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Test for Cointegration: Johansen (No drift) 2/2

2) The second statistic tests the null hypothesis that the number of distinct cointe-

orating vectors 1s r against the alternative of r + 1 cointegrating vectors. That 1s, to

— A, =0

test Hp:rankim)=r Apig =+

against the alternative hypothesis H, : rank(r) = r+1. Arsa ==X, =0
, 1

- T .
L.=K — 3 Z]n(l —\;) L,=K — 5 Zl:ln(l —\).
i=1 i=

the maximum-eigenvalue statistic |Apa.(r,7+1) = =T In(1 — j\f,.+1)

When the estimated 5\.,._1 is close to zero, Apax(r,7 + 1) will be small. The further the
estimated characteristic root are from zero, the more neagtive is In(1 — )A\T. +1), and the
larger is Apax(7. 7 + 1). Critical values of the test are in Table E (the case without any

deterministic regressors: the first cell) at the end of the text.
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®E A B _ RitEEEEST

BEMNAT W% 5% 3 5% 1% LO%e 5% 2. 5% L%
AL AR ES D DI R A, A A, BT
Ao A bk
1 2. &6 3, 84 4.93 6. 51 2. 86 3. 84 4.93 6.51
2 9.52 1lL.44 13,27 15 69 10.47 12.53  14.43  16.31
3 15.59 17.8% 20.02 22,99 71.63 2431  26.64 29 75
4 21.56 23.80 26,14 28.82 36,58 39.89  42.30 45 58
5 27.62 30.04  32.51 35.17 54.44  59.46 62,91  66.52
WEEM AL A LETE
A . .
1 2. 69 3,76 4,95 6. 6S 2. 69 3.76  4.95 6. 65
2 12,07 14.07 16,05  18.63 13.33 15.41 17.52 2004
3 18.60 20.97 23,00 25 52 16,70 20.68 32.56  35.65
] 24.73 27,07 28.98 32.24 43,95 47.21 50.35 54,46
5 30.90 33,46 3571 38,77 64.84 68,52 71.80 T76.07
Wik BB RIAA A LR A HilTE
- L —
1 7.52 9.24 10.08 12.97 7.52 9.24 10,80 12,95
2 13.75 15.67 17.63  20.20 17.85 19.96 22,05 24,60
3 19.77  22.00 24.07  26.81 32,00  34.91 37.61  41.07
4 25.56 28 14  30.32 33,24 49.65 53.12 56.06 60.16
5 31.66 34,40  36.90 39.7¢ 71.86 76.07 80.06  84.45




Test tor Cointegration: Johansen (with drift)

p—1
Axy =+ T + E mAx;_; +e;  where p 1s unrestricted.
i=1
Replacing Ry and Rjy;. respectively, by

p—1
Ry = &ﬁt_g 'ﬁ'iﬁiﬁt—i_;&

i=1
p—1

Ry = I‘t—l—E Tl‘iﬂ%—i—#:
i=1

we proceed 1n the same manner. The limiting distributions of the trace and maximum-
eigenvalue tests change. Their critical values are listed in Table E (the case with drift:

the second cell) at the end of the text according to the form of the vector Ay.
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Test for Cointegration: Johansen

(with a constant in Cointegrating Vector)

p—1
Axy = p+ a1 + E T A\xse_; + ey
i=1
with 7 = a/',where a and /3 are two n x r matrix with rank(/3) = r. The intercept is
restricted: p = af)y for any arbitrary 1 x r vector 3. Then
p—1
: ol al
Az, = a(fy+ o)+ Z T, A\xp_; + e,
i=1
p—1 p—1
f £ _ L
= (I,:f')’[],l,:f')’ ) + E ’FT‘;/_\It_.E +e = Ly + E W-ﬁ‘AIt—i -+ Et.

1=1 1=1

p—1
replace Ry; by Rj, = =, | — E VAN
=1
Critical values for these tests should change, and are listed in Table E (the case with a

constant in the cointegrating vector: the third cell) at the end of the text.
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Hypothesis Testing in Cointegrating Vector — 1/2

Hypothesis testing about some restricted forms of cointegrating vectors:

1) Test Hp : including an intercept in the cointegrating vector as opposed to the

unrestricted drift Ap (i.e. a linear time trend). Estimate the two forms of the model and

obtain the ordered characteristic roots:

o - s

M >N > >\ A, > A, > AL

with unrestricted A, with restricted 4y = o,

re N (1o 1R\
== In{l=A) | (-5 {l-A\)||= T » In ]~ x(n—-r
( L ) ( 2 )] ; 1 — )\ )

Large values of the test statistic imply that it is possible to
reject the null of including an intercept in the cointegrating
vectors, and that there is a linear trend In the variables.

2
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Hypothesis Testing in Cointegrating Vector — 2/2

2) Test for restrictions on [3 or ar, where 7 = aff’, a (n X r) is the matrix of the speed
of adjustment parameters, and ' (r x n) is the matrix of cointegrating parameters.
Use MLE to estimate VAR(p) model (6), where e, ~ iidN(0,%), ¢t — 1,2, ---, T\
and Xy_,, -+, X are given constanl veclors, determine the rank ol 7. use the r most

significant colntegrating vectors to form «. then select 3 such that = = /.

The test statistic 1s

(Tiln(lj\)) k Llﬂ(l—)ﬂ)

=1 =1

- TZ[IH —111(1—)\)}

=1

~ X2 (the number of restrictions), asymptotically.

we can test «; = 0, the variable x;; 1s weakly exogenous. 46



Notations for a, 3. The VEC model 1s z; = Ag +a/f z;_; + Zf:,' T Az + e;.5et

n=23r=2 Then

Ay, Qyqp Qo 3 3 3 Y—1
A 11 P12 Pha
&Zt e f.-lfllllj :‘Ef—l _|_ . {lzl EIEE j .-’j "f 31_-_1 —|_ i a
| a1 Pag Pag
Aw, g1 Qi3 Wi

app ago . § .
( Brle—1 + Prazi—1 + [F1awe ) n

.*'szlyt—l T _J"}gg t—1 T .iffggwt—l

gt [y 41 + Fiazem1 + Brawit] + @[y ye—1 + Pya 21 + Fygtsi]

In EViews the rule in notations is the same on A(i, j) and B(i, j).For example, A(2, 1)
indicates the adjustment coefficient of the first cointegraion equation in the second equa-
tion of the VEC model. B(2, 1) indicates the first coefficient in the second cointegraion

equation.



Four Steps in Johansen-Stock-Watson Test

1. Pretest all variables to assess their order of integration.

Estimate the model and determine the rank of 7.

o

3. Analyze the normalized cointegrating vectors and speed of adjustment coef-

ficients and test the restrictions about each of both.

4. Conduct mnovation accounting and causality tests on the error-correction
model to identify a structural model and determine whether the estimated

model appears to be reasonable.
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Difference or Not Difference? VAR or ECM?

If the I(1) variables ; are cointegrated, differencing them and estimating a VAR:

p—1

Ax; = Z T AT + e

i=1
will lead to a misspecification error since it excludes the long-run equilibrium relation-
ship among the variables that are included in wx;_i.If the I(1) variables z; are not

colntegrated, 1t 1s preferable to estimate the VAR in first differences.

If I(1) z; are not cointegrated — estimate VAR in first differences

If I(1) z; are cointegrated —> estimate the error-correction model
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