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Ditterence Equation

<+ EXpress the value of a variable as a function
of its own lagged values, time, and other
variables.

% The trend and seasonal terms are both
functions of time.

< The irregular term is a function of its owns
lagged value and of the stochastic variables.

< Time-series Econometrics: estimation of
difference equations containing stochastic
components.



Ditterence Equation
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Ditterence Equation: Examples

0 Random walk: y, =y, ;+U,
0 Reduced-form and Structural equation:
Yy, =¢C, +1i

N

c,=ay,,+é&,.,0<ax<l

\it =p(C, —C)+ &, >0

yt = O.f(l-l- /8) yt—l - a/[))yt—z T (l+ /B)gct + it — /Bgct—l

O Error-Correction:
St+2 — St+1 o a(st+1 o ft) + gs,t+2 o > O
ft+1 — ft + ﬁ(stﬂ o ft) + gf,t+2 ﬁ > O



Difference

Equation: Constant Coetficients

O Linear parametric difference equation:
n

Yi =8y + Z a; Y + X
i=1

where n is the order of the difference equation;
X, IS the forcing process that can be any function
of time, current and lagged values of other
variables or stochastic disturbances.

o A modified version:

a0+7/Yt1+Zayt|+Xt y=a-1

O A solution: a function of the elements of {x.}
and t or some given values of the {y,} (initial

conditions).



Solve Difference Equation: AR(1) (1/4)

< Iterative method:
« Example 1: v = ao+ a1yi—1 + wy
t—1 t—1
Yt — Qo Z ay + ﬂi Yo 1 Z ajti—;.  If 1o is known
1=0 =0

t+m t+m

. 2 t+m—+1 i
— Qo E ay + ay Y _m—1 T E Ut
i=0 i=0

It Y—m—1 1s known

It |a| <1, as m — oc.

. : B ag ;
a speclal solution = T — + E Ut -
— a; _
1 =0



Solve Difference Equation: AR(1) (2/4)

< An alternative method:
The general solution = the homogeneous solution + a particular solution.

<+ Homogeneous equation: ¥: = a1¥:—1

1Yy = Aaj] is the homogeneous solution

<« General Solution: If a, is not equal to 1

(1 >

yr = Aaj + | _Dﬂl + ; aUs—g.

<+ S0 we can calculate A to obtain a special solution
from the general solution by a given initial
condition, e.g. at t=0, y=y,.



Solve Difference Equation: AR(1) (3/4)

% ODbtain a special solution satisfying the initial condition yj .

a, t—1 |
If |a1 |¢1’ Yi = (yo n] 1t+ +Za1 Up_;
i=0

t—

t—1
i t
=a,). 8 +a;y,+ .8 'u_
i=0

1-a,
1

i
Ita, =1, Y= agt+yy~ Zui_ (B ZEt=0 1)

< fE|a L I, R] AT A AE SRER E A= yo_l___zai iy
FAR BT, Ry, i

% The solution shows that, when |a,|>=1, each disturbance
has a permanent non-decaying effect on the value of y,.

% Stability Condition: |a,| < 1 8



Solve Difference Equation: AR(DEJ[H]B$42  (4/4)

¥=03y,_+¢ ¥=0.3y1t4 ¥ =05y e,

3 10 13 P, | B

1 ] : | I 100 ¥ | T I

08 -

06 50|~ ‘

04 | - |

02 ' f 1 ' % I: 1In :ls zln 25

0 5 10 L3 20 23
(d)




The Cobweb Model: AR(1)

d,=a-yp, y>0 P, =Py

s,=b+pBp, +u, B>0 i b p |
pf: o p;—l__uf

s, =d, y 7 /4

p =izl [ B[, _a=b) 15 _£Y),
v+ Uy )\ y+pB) r3\ 7))

If the supply curve is steeper than the demand curve, i.e. f/y <1,

then the system 1is stable.
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Solve Difference Equation: AR(2) (1/4)

« AR(2): Yt = a1lr—1 + A2Yr—2 1 Us,
<+ Homogeneous Equation:
Yt = QY1 T A2Yt—2.

+» Assume v: = A\° and obtain the
characteristic equation:

/\2—{11/\—{12:0.

)\1:)\2 — ({11 - \/&%"‘4{12) /2
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Solve Difference Equation: AR(2) (2/4)

<+ Homogeneous Solution:
according as nr.? + das =0, =0 and < 0

gy = (Al + AN A=2= )\
T
yt = Aprteos(0t+Ay), 7= —ay, 0 = argty (\/—a? — 4(1,2;’::11) .
a,
« Stability Condition: arl-a, | e=lea,
as +a; < 1 C

(lo — A1 < 1

+ 4 3y
Ll
2 > —1 m .
[ | 12




Solve Difference Equation: AR(2) (3/4)

o Example 1: y,=0.2y, ;+0.35y,_,
The two characteristic roots are 0.7, -0.5.

y,=0.7t+(-0.5)t y,=1.037t+(-0.337)t

o Example 2: y,=0.7y, ;+0.35y,_,
The two characteristic roots are 1.037, -0.337.
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Solve Difference Equation: AR(2) (4/4)

<+ General Solution for y: = a1yi—1 + a2lr—2 + Uy,
ve = yr + yl

=y +yi+ o

o0 -k
— Zi:u Q4 T Yt

14



Solve Difference Equation: AR(n) 1/2

O Difference equation:
. =a, + Za Vo + X,

O First, solve homogeneous solutlon of ¥ = Za Yii -

i=1
- iai/v-‘ =0 A" (/lt - iai/v‘] =0
i=1 i=1

->aA"" =0, ie A"-ai"t-a,A""——a, =0

The linear combination: A4 + A4, +-+ A4}

O At least one characteristic root equals one if
a,;ta,+...+a,=1.
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Solve Difference Equation: AR(n) 2/2

O Particular solution for
n
Yi = +Zai Yeii T X
=1

If x, Is deterministic, e.g.
x, =0, thenset y’ =c (furtherif a, +---+a_=1,sety’ =ct);

x, =hd", thensety’ =c,+cd";

— _|_h1'k than d
do, T UL, Ulcil

\V4 cat v
A L 11 OCL

k-1 k.
Co,+Ct+--+C 7 +Ct5;

t
If X, = u, is stochastic, set y; = Z

i=0 '
If X, includes both deterministic and stochastic terms,

insert y” =y +y? into the difference equation and solve c's
and «'s by the method of undetermined coefficients.
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Lag operator

O Linear operator

If |a| < 1. =S adly = a'ns
- i=0
_ Yt o —1 Yt
1f |{L| > 1, l—(}LL__(&L) l—(a,L)_l
=—(al)™ Z(@L)_iyt = —(al)™ Z@_iym-
i=0 i=0

o A(L)y; = ag+ B(L)z; has the particular solution 1 = (ag 4+ B(L)z;) /A(L). The
stability condition is that the inverse characteristic roots (i.e. the roots of the

inverse characteristic equation A(L) = 0) lie outside of the unit circle.
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Some Processes

o White-noise process: {e:}, Elz;] = 0, Var(s;) = o* (constant), Beye; = Eei_jsis
= (, Vt and for all 7, s # 0.

—J

» MA(g): a moving average of order ¢, {x;} satistying z, = > 7  3,5;,;. where
3y = LIf two or more of the coefficients [3; differ from 0, {x:} are not white-noise.

(Consider z; = ¢4 + 0.56;_1)

o AR(p): p-order autoregressive, iy = ag + Y ., Gl + &4

o ARMA(p,q): (p,q)-order autoregressive moving-average process,

p q
Yy = ag + E a;Yi—; + E B.ei_iy, g =1
i=1 =0

/ \ / P

q \
Ut = kao + z .i/')'.f;Et—s) / kl — Gf;LE) :
i=0 i=1
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Stationary Process and Autocorrelation

e {y:} is (covariance) stationary if, for any ¢, t — s,
Ey, = Eyt—.s:#*.
Var(yy) = Var(yi—s) = rri < oq,
Cov(ys ths) = Cov(th—j yejs) =7,
are all constants, which are time-invariant

e autocorrelation between y; and v;_;:

Ye _ Covlysyi—s) _ Covl(ys,yi—s)

Ps v Covlyny) o3 » o

= 1.
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Conditions for AR(1) Stationary Process

2 AR(1): | ¥ = @ + ®¥i—1 + . | where a, is not equal to 1.
<+ For any given initial condition y, (suppose not random)

ao(l —at) !

t T
Y = : + a Yo + 5 A1 Et—q-
1 — ay —
1=

ag(l — aj) t
‘ + a1 Evy,_ . =
1 — a 140 T*’i Yt—s _I_—ﬂ.-|

+ Yo can not be fixed! It should be a random variable.
+ Restrictions: y} = 0, I.e. A=0; y,is a random variable;

E'E,-f't —

ay| < 1 and {y;} have been occurring for an infinitely long time.

ap
i= {}ﬂlut i Ey; = 1— —Ejt 5

Uy =

L-'. (=3
'rT"" 2 =

O oo
ol _ 2 |+3- 2j+s _ 770
‘ﬂ-?“(yf—.q]—l_ﬂ_? Cov(ys, yi—s) = 0 Z‘;Z; @;+s—ﬁz T 1-d
=1 20




Conditions for ARMA(2,1) Stationary Process

XX ARMA(Z, 1): Y = Q11— T Qo + E: T ._.'?1;-;1:_1. where £; 1s white-noise.
% One Restriction on homogeneous solution:y = 0.
<« Try a particular solution: |y = > 2, aic:;

s e
QoS¢ T Q1E¢—1 T E Qg = E¢ + (g + )i + E (@101 + aaavi_g)es—;
kg — 1

a; = a0y + 3, = a; = a; + 3

Qj = A1 + AaQ_2, 1 = 2.

o0

» Hence: y = et + (a1 + B1)ee—1 + o0 ici—i, Where

o = a10v—1 + gQy_g, © = 2, with ap = 1 and a; = ay + 3,.

<« If the characteristic roots of ARMA(2,1) lie within the unit
circle, {«;} is a convergent sequence and {y,} is stationary:

00 f > 21
Bye=0= By W5 Var(y) = Var(y—.) =0* Y a2 vt,s, (o) = 7 Z—(; et

i=0



A Theorem about Stationarity

e Theorem Let the roots of the polynomial equation

sm—1 . n—=2
i

M+ ay. AT 4 da, =0

be less than one 1n absolute value, where a, # 0, and let the weights {a;}{2,; be
defined by the solution of the homogeneous difference equation

o +ai—1 + Qa9 + - -+ apai_p, =07 =p.p+1,---

subject to the initial condition ag. . -+, a,—1. Let {&;} be a sequence of uncor-
related (0. 7*) random variables. Then the sequence {u;}, where y; = > 7" aies_;.

13 a stationary moving average process. Moreover., {y:] satisfies the stochastic

difference equation
Y T 1Y T Qaljg—a + -0 T Qpli—p = €4

for almost every realization of {e;}

Note: The proof requires the following theorems:
1. It the characteristic roots of the above difference equation of «; are less than one

in absolute value, the sequence {a;}%, 1s absolutely summable, 1e. 3 ™" |a;| < oc.

2. If {a; }725 1s absolutely summable, then >~7" a;® << ocand > ", oo, < oc.
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Conditions for MA(co) Stationary Process

VT AL 00
MA(0) : = 5% ficeis fo = L.
Elt — 0 — E:Et 5
Var(z,) = o? Z 3 = Var(z,_,)
i=0

e
W, — . — 2 a
Cov(zy,x;_,) = Exxy ;=0 E 3.0,
i=0

If Y2y 8.0, < o0 Vs, MA(o0) will be stationary.

MA(q) is always stationary for any finite g.
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Conditions for AR(p) Stationary Process

I3
« AR(P): w=a0+ Z QiYe—i + Et.

i=1
If the characteristic roots of the homogeneous equation all lie inside the

unit circle (and hence 1 — Zp a; # 0), the partic:ular solution

Yt = + S Qife—g
el 1=
Zz__
. ot r L P .
since the series {a;} solve the dlffElE‘.Il{fE equatmn CL; =1 40— = 0.

Ey, = By, =

to
l_zj{g:]ﬂ'i! (1?‘ J't Zaajn étj_rr Z < 00,

1,7=0 =0

Con(Ye. Yees) = o2 Z sty < OO

=0

24



Conditions for ARMA(p,q) Stationary Process

<« ARMA(p,q):

p q
Uy = Ay + Z il + Z -:'.?i‘ft—i'. ?[l = 1.
i=1 i=0

Since {Y* , .c4—;} Is stationary for any finite ¢, only the characteristic roots of
the autoregressive portion of the ARM A(p. q) process determine whether the {1 }
is stationary. Therefore, if the roots of the inverse characteristic equation
I —a L —ayl* — -+ —a,L” = 0 lie outside of the unit circle, then {y;} is

stationary.

25



Autocorrelation function ACF  1/4

Cﬂ“b‘(yt Ut —s )
Var(y:)

e The autocorrelation function p, = %ﬁ —
(]

o ACF for AR(1) process: 1y = ag+ a1 —1 + &4.

Yo = Var(g) = /(1 —al),
> o o2a’
Ve = Covlynys) =02y ai’ 6, = 1 — aI%
7=0

Po = 1, p, = aj for s > 1.

converge to 0 geometrically as § — oX,

provided |aq| < L.



Autocorrelation function ACF  2/4

e ACF for AR(2) process: y = a1Yys—1 + Qals—2 + &4

-~ —_— -~ - 2 s — fat L
0 _a'l 1 —|_ﬂ2 JHE'_'_J 1 JrIIS — ﬂ"l fs—1 +ﬂ-2 JHS—E'-' S :i ]'

po = L pr=a1/(1—aq),
Ps = Q105 ‘I’aﬁ,ﬂs_g, 5 :_:" 2.

p, satisty the difference equation p, = mp, | +asp, 5. s >0

is stationary since the characteristic roots lie inside the unit circle.

The ACF converge to 0 (directly or oscillatorily) as s — oc.
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Autocorrelation function ACF  3/4

= 1,
= A/(1+ %),

e ACF for MA(l) process: y; = ¢4 + F54_1.
Yo = Var(y) = (1+ 3%)72, Po
vy = Cov(y, yemy) = 3o, 1
Yo = Covlynye—s) =0, s 22 p,

= 0, 5 = 2.

The ACF p, (s = 1.2....) has one spike (p, # 0) and then cuts to 0.

Yo = Var(y,) = (1+ 55 + 33)0°,

Y1 = Cov(ys.ye—1) = (By + 5135)0°,
vy = Cov(ypys—a) = .53252-.

Vs = Cov(ypp-e) =0, s = 3,

The ACF has two spikes and then cuts to 0 : p, = 0. s =

3.

e ACF for MA(q) :

has g spikes and then cuts to

O:p,=0,5>qg+ L

28



Autocorrelation function ACF  4/4

e ACF for ARMA(1,1) process: y: = a11s—1 + & + F154—1.
Yo = Effﬁl& = @17 -+ !"J'2 + ?1({11 + _:"f}il)rTz

a2
Y = By =ayy+ 50
Vs = Epp-s =17, s > L.

{l + {1-1_:"?1}(:{1.1 + f}‘l}
L+ 35 +2a, 3,

P =

1+32+2a1 3
Yo = —1—70% and 7,
l=aj !

R e A
Ps — Q1fP;_1, 5 Z 2,

p. converge to 0 geometrically as s — oo provided |a;| < 1.

o ACF for ARMA(p.q) process: ys = ayy;— 1+ - ~+0,ls—p+e4+ 0161+ -+ ¢
p, (s > q) satisty (Note that p, = p__ ):

q\:rt_q "

Ps = Q105 nalie a?ps—p‘ S E q + L.

Under the stationarity restriction (all the characteristic roots of the model are

within the unit circle), the ACF converge to 0 as s — oc.
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Partial Autocorrelation Function: PACF 1/2

e PACF between 3; and 1;_, eliminates the effects of the intervening values 1;_;.

Yt—2,... Yt—s+1.

e How to do? Set y; = y; — Evy; and construct y = ¢ 05, + &,

then ¢, = PAC'F between y; and ;1.

1 ES I * I *
Construct Yy = Do Yp_q T Pagly_o T €,

then ¢y, = PAC'EF between 1; and y;_o.

e AR(P): no direct correlation between y; and 3, for s > p 1e ¢, = 0 for
s =p—+ L
e MA(q) results in infinite-order AR representation. The PACF exhibit a decay.

¢ ARMA(p.q): ACF begin to decay after lag g (since the ACF for MA(q) cut to 0
after lag q and the ACF for AR(p) decay) while PACF begin to decay after lag p

(since the PACF for AR(p) cut to 0 atter lag p and the PACF for MA(q) exhibit
a decay).
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ACF and PACF 1/2

e A rule to select models is used by comparing the graphs of the ACF and PACF
to the theoretical patterns. For example, if the ACF exhibited a single spike and
the PACT exhibited monotonic decay, try to select an MA(L) model; however,
if the ACI" exhibited monotonic decay and the PACT' exhibited a single spike,
try to select an ARR(1) model. If the ACT" exhibited monotonic decay and the
PACF exhibited two spikes, try to select an AR(2) model. Il the PACF exhibited

monotonic decay with no spikes, try to select an ARMA or MA model.

ACF FACF
A7y, ,+&, 07y, TE,
] 1 1 | 1 ) | L} | 1 F L] T 1 1 | 1 3
4O (4]
—0.5+ - —05F -
"1 | I | k 1 ] | 1 -1 1 | | 1 1 | k |
1 2 3 4 5 c 7 g 2 3 a 1 a 7 ]
— L%, _,+r, —'D_T_'_Lr,_1 +E,
1 T i T T T 1 T T 1 | T | T T T T T
0.5 _— - 0.5} .
] - g
ot 1 _osll i
— l. | 1 1 1 [ | | 1 F —_ ] 1 1 i | 1 i 1 1
1 > a 4 x & i ® 1 X 3 4 & & rd B 31




ACF and PACF

e,~0.7e,_,

03 -

_{]_5 -

Lint fo
.
h
"
.|
Q@0 -

0.5

L
0.7y, ~04y,_.tE,

T T I T T T T T
I
2
I
| -
R
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Sample ACF and PACF 1/2

Define § = (1/T) S, w. 6° = (1/T) S, (u: — 1),
For s = 1,2, --- , define the sample ACF

_ ZS=5+1(% — N Ys—s — )
Zf:](yt —7)? 1

The sample PACF ['553 1s the estimator of ¢_, in

5

y: — ':.il)sl'y:—l —|_ o —|_ dssy:—s —|_ €t-

where y* is the subtracted mean of the series from each observation
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Sample ACF and PACF 2/2

recursively

. r1, lor s =1
W, = -1 5
22 (TS — Z_?:l tl.?'jl's_]?j?”s_j) / (l — Z; 1(:53 1457 j) for s > 2.

where s = Ps1,j — PssPs—1,6—js ] = 1.2,--- .58 —1.

If the sample value of 7 is zero (corresponding to p, = 0).
the process 1S expected to be JJIA(S — l). if the estimated value of éss
1S Zero (cc:-rresponding to ¢, = U}, the process is expected to be AR(s—1).

Hence a test for AR or MA.
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Testing for AR and MA 1/2

e Under the null: y; ~ MA(s — 1) (i.e. p, = 0) with normally distributed errors,
re ~ N(0,Var(r;)) asymptotically, where

Var(r.) — T7' s=1

Under the null: 3, ~ AR(p) (i.e. Gpsipes = 0,2 > 0], the variance 'L-"'a.-r(f;-hpﬁrpﬂ-) 1S
approximately 1/7T. In EViews, the dotted lines in the plots of the ACF and PACF

are the approximate two standard error bounds of 71 or ¢, computed as =2/v/T.
[t the value of the ACF or PACF is within these bounds, it is not significantly

different from zero at (approximately) the 5% significance level.
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Testing for AR and MA 2/2

(1) t-test: From the sample ACF, construct t-ratio: { = r;/\/Var(r,) for the
significance of s-order autocorrelation for some s > 0 (Hy: p, =0 or y; ~ MA(s —1)).
From the sample PACF construct t-ratio: £ = VT [-;."lp +ip+i Tor the sigmificance of p-order
=0ory ~ AR(p)).

autoregression (Hy : Ppt+i p+i

(2) Q-stalistic (Box and Pierce (1970)): test whether a group of autocorrelation is
significantly chifferent from zero. It shows that @ = TE;ZI r? ~ y*(s) under the null
hypothesis that all vz — U tor & — 1.2 ... 5. Rejecting the null hypothesiz means that at
least one autocorrelation 15 not zero. For a white-noise process, (7 = 0. If the calculated

value of @ exceeds the critical point of v2(s). reject the null hypothesis, meaning that

at least one autocorrelation 15 not zero and there are some autoregrezzive terms 1n the
model  (this statistic works poorly) Modified Q-statistie (Ijung and Box (1978))-
Q=T(T+2)>;_,7:/(T — k)~ x*(s). In EViews, the Ljung and Box Q-statistic and

the P-velues are presented.
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Model Selection of Tags

O Use AIC or SBC:
AIC = TIn(S5R)+2n

SBC' = Th(SSR)+nlnT
where 1 15 the number of parameters i the estimation (p + g+ constant term),
T 15 the number of usable obzervations (fixed. Here, the zsame sample period for
different. models should be used). In EViews.
Al = (—2InL +2n)/T.
SBC' = (=2InL+nlnT)/T.

The different methods of calculating the AIC or the SBC will necessarily select

the same model.

e The smaller the AIC and the SEC are, the better iz the selected model

Since InT = 2, the SBC will always select a more parsimonious model than the AIC.
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Model Estimation: AR(1) 1/4

Y; = ap+ a1 Y;—1 + &¢,where ¢; ~ 4.i.d.N(0,0%), © = (ag, a1, %), |aq| < 1.
g 72
} £ - .', — = ‘,F i .}/. —
-_ﬂl—l_;alit 1-—a : ar(%:) 1—a3

1) Exact MLE Y, ~ N (ﬂl;i{) 2|Y1) ~ N (ag + a Yy, 07)
fraya (U2:11:©) = fyava (U2|11: ©) fyy (11: ©).
,f}’s,}’z,}’_i (ya- Y2, Y "‘5') — f}fswz,}«a (ygl-yz._ (A {Tjjrf}’z:}a (yz_ =)

= fyspes (U3ly2, 11:9) frap (u2|y1: ©) fyvg (11: ©).

The joint density of the sample:
T

Frzvro v yr yr-t. - 1130) = fri (1130 | [ Framecs (welve-1;©)

t=2
_ 1 exp [~ L= )’ T |- e (ys — a0 — arye—1)”
V2ma?2/(1—al) 20%/(1 - ﬂ% o | V2mo? 202

' I (y1 — p)’  (ye — ao — a1ye—1)”
T =) Ye — Qg — Q1 ls—1
- Vit (;ﬁ) “p( - 2 207 ) | *

=2




Model Estimation: AR(1)  2/4

O The log likelihood of the sample:

In L : log(1 — a?) Tl (27) (y1 —ao/(1 - ﬂl))z — (y: — ag — ﬂ!ﬁﬁr‘t—li’?
nL==—1001—a,) —=—1022T| — —
9 5 N T QHE/(l——G?) %;; 202

Denote ¥ = (}7,Y5,--- | Y7). Then EY = pl, where 1 = (1,1 --- 1) 1saT x1

matrix, and

Q=E[(Y - p1)(Y — )] V=M0,Y, Y7 ~ N(pl0).
Yo 1 -1 L ay - oap !
B Yy TR e B o2 ay 1 e ﬂ'f—?
B : S : B : L :
Tr—1 T1—2 -~ o } \ f‘?_l L":1{_2 T 1 }
: T~ 111/ | R e
fr(y;©) = (2m) 7272 exp (—5(1’ —pl)Q7HY — ﬁ”)

T 1 1
InL= —Elug(?}r) +3 log [0~ = Z(Y —ap/(1=a)) 1)~ (Y = ag/(1 = ay)1)




Model Estimation: AR(1)  3/4

2) Conditional MLE Take y; as deterministic
T
- - I — 10 = F I —
Tvp Yoy e Yoy WUT, Ur—1, 0 12|01 9 ) = | | Tvefveoa (Wt 4-159)
t=2
T -
_ H ! exp ( _ (1p — g — ﬂ-!fr—l]'n'
+—9 ‘VIIIZJTI!T? \ 2{.}.2 ;‘l
- T
_ 1 \ﬁT lexp __EE:(HE_'RG_'HIHFJJE
V2mo? ) — 202 | '
I . 3
Inl = —T —1 low (20 — -1 low(o?y — N\ liyf — Gp — ﬂlyt—lj
2 = I 3 =1 bl L‘ 2!,]_2 '
=2

T
equivalent to minimization of Y _ (v — a0 — arye—1)”.
. =2
fT=TjT§]m—%—ﬁmqf-

t=2



Model Estimation: AR (1) 4/4

Compare exact MLE and conditional MLE:
T T
i (y1:0) an|}’:+,_1(yt|'yt—1i ©) = Hfﬂ|a;_1(yt\yt—1: 9),
t=2 t=2

feve_ s v (Uroyr—1 - 1 0) = frpve_ye volvs (U yr—1, - -+ Y2y1: ©).

Both exact MLE and conditional MLE have the same large-sample distribution.

When |a;| > 1, conditional MLE continues to provide consistent estimates, whereas
exact MLE does not, since 1 ( (1 — )’ )
)

.\/Qﬂ'a?f(l — ﬂ%) ) _?n'?f(l — ﬂ%)

does not accurately describe the density fy,(1;:0) of Y. Hence, in most applications

the parameters of autoregression are estimated by conditioanl MLE (OLS) rather than
exact MLE.
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Model Estimation: AR (p)

3/;:{1[] _|_{Ir13/;_1_|_"'_|_{1p};_p_|_&ft

where &, ~ '?:.'?:.d.N(U;(TQ) O = (agp,ay, - - ; Ap s ”2)"-

-
A

All the characteristic roots lie within the unit circle.

Conditional likelihood for the sample 1s

-}(YTayT—la'"1YP+1|YF:"' Y1 ('@}T; yr-1, - :lyp-|-1"yps Yp—1," " 5 U1, (T))
T
1 .
— 5 5 H .fr“}irff_h- Yi_p (yi!yf—l :yi—p (:))
el




Model Estimation: MA (1) 1/3

Y; =ag +¢; + 016_1,where &; ~ i.i.d.N(0, 0%), © = (ag, 0y, 0%)"

EY;, = ag, Var(Y;) = c*(1+67).
1) Exact MLE

Denote Y = (Y1, Y5, -+, Y7).
— N ({IGIJQ) -

1
2

Fy(5:0) = (27) T2 V2 exp (— 201 — g1y (Y — o) )

Q= FE[(Y —al)(Y —ael)]

[ 1+62 b, 0 0 0
0, 1+ 67 6, 0 0
_ 0 64 1+ 67 0 0
0 0 0 1+ 67 6,
\ 0 0 0 o 1+067 ) e




Model Estimation: MA (1)  2/3

2) Conditional MLE  Assume ¢, = 0.
(Yileo = 0) ~ N(ag, 0?) (Ya|Y1,60 = 0) ~ N(ag + e, 0%), where & = 1 — ag

Framilzo=0(2: 1le0 = 0;0) = fyoyy co=0(12ly1,€0 = 0; ©) - fyjzp=0(¥1]c0 = 0; ©)

fY'T,YT_1,---,Y1|:U=U('yT: Yr-1, - :'311‘50 = 0; (”))

— fYT|YT_1,---,Yl,:u=0('yT"yT—1, U €0 = U (”)) ' .fYT_l,---,Yl\:u=0('yT—la T n'yl‘g(l =0

T
= frileomo(tnleo = 0:0) | | Fravisi vacomol W1, -+ 41,0 = 0;0)
$=9
(&) (L3
_ & where ¢, = 4y —a
— exp Z 2) 1 U1 0
210 t=1 20 & = U — (&U + Hlf_‘ﬂ.t_l); t 2 2.

44



Model Estimation: MA (1)  3/3

For any £o # 0, when |6;] < 1,

o = Zg,—ﬂ( 01)" (J—' — ao),

—

— Z(_ﬁl)i('yt—i — ap) + (—61) o

1=0

= Y1 — ao + (—01)co

£1
e = ?f+—({1n—|—(3"|t+_|‘—|—( Q)t
When g, = 0, we obtain the previous case.
If |61] is substantially less than unity.
the effects of imposing ¢ = 0 will quickly die out
If ‘51‘ > |, | consquences of Imposing £5 = () accumulate over time

the conditional MLE is not reasonable.

45



Model Estimation: MA (q)
Y; = ag+ & + 01641 + - + 0,6 where & ~ 1.0.d.N(0,5?)

EY;=as, Var(Y;) =o*(L+06{+---+06).

Exact hikelihood 1s

s /1 L \
O/ = exp k— (Y —apgl) Q- (Y — 0;01))

Ay

fyly:©) = (2m)7T/3
Conditional likelithood

'L i | " P
IYr.Yr_1, Yilepem1,oeqri=0\Yu1s Yr—1, "~ Y1|€0,€-1, """ ;€41 = U1 O)

T

T
1 E? ) ) )
_ .~ where & = Iy — Qo — 06—y =+ — 0,4
(\%) E‘Xp( Zw) B

t=1

Conditional MLE is reasonable only if all the inverse characteristic roots
for the MA lie outside of the unit circle. 1+ 01z +---+0,27=0



Central Limit Theorem for Time Series

* Central Limit Theorem for Stationary Time Series.

e Central Limit Theorem for a Martingale Difference Sequence: Let {V;}
be a scalar martingale difference sequence with Y7 = (1/T) Y., Y;. Suppose that
(a) E(Y}?) = 0% > 0 with (1/T) Z:{:l 7?2 — ¢ > 0; (b) E|Y;|" < oo for some r>2

and all £; (c) (1/T) " Y?— ¢ in probability. Then

Jrr
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Three-Stage Model Selection: Box-Jenkins 1/2

O ldentification: Examine the time plot of the
series (data), the ACF, and the PACF visually.

O Estimation: Fit the suggested models under
stationarity and examine the estimates of
parameters in the ARMA models. Select the
model with parsimony, where Q-statistic,
AIC, and SBC are used for model selection.

O Diagnosis: Plot the residuals from the
estimated model to look for outliers and for
evidence of periods in which the model does
not fit the data well.
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Three-Stage Model Selection: Box-Jenkins 2/2

Notes:

(1) If all the plausible ARMA models
estimated above show evidence of a
poor fit during a reasonably long portion
of the sample, consider multivariate
estimation methods;

(2) If the variance of the residuals Is
Increasing or has some tendency to
change, use a logarithmic transformation
or ARCH techniques.
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Forecast: AR(1) % = a0+ a1 + &

forward 1teration

'

. _ . - . 2 ) ]
J Ysr1 = Q0 T Q1Y T St Yera = ao(1+a1) +ajys +erpa + argey
. _ .. | B 9
k Eiyiiy = ag + ayy;, Eiypo = [’.I[](l + al) + s,
4 ! ' .
ail . :n-l’(-l | ... nj_]\'l | n-?-n | = R . ... nj_lp?
Ut-l—j oL — W] T T g ) T Uy T "H'.? T l"l‘-’t—j—l T T Wy |
B =ag(l+ar+--+a )+ ajy.
: ag . _
lim Erye; = - if |ay| < L.
j—o0 ' 1 — o8

the j-step-ahead forecast error

- i—1
€:(J) = Verj — ExYrsj = €4aj + @14 i1 + - T ] €441
Eie.(7) = 0 Varle(j)] = o*[1+a*+-- -—|—G:?U_IW — o*/(1-d") asj — .

X

The torecasts are unbiased, but the quality declines as j increases.
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Forecast: ARMA(2,1)

Y = Qo+ Y-1+agys—2 e+ 81,

Yerz = G0 + @1Yer1 + ol + ey + 1€
Eiyrio = ag + a1 Eyypo + asuyy

= ap(l +a;) + (a% 4+ az)y; + a1agys_1 + a3,

Yra1 = Qo+ @yl + gty + Er01 + e
Etyre1 = a0+ a1t + aal-1 + 06,

Yty = Q0+ Q1 Ypyi—1 — A2Ypr 2 + E¢pj + .J""alf-tJrj—l

anz—j = ag + ﬂlEa'yz.+j—1 + ﬂzEt'ya+j—2: 7] = 2.

out-of-sample forecasts

Ety,., = ao + aryr + asyr—1 + PET,
_|_

Eryrio = ag + ay ETyroy + asyr
Eryrsz = ap + a1 Eryrio + as Eryry

51

Eryr+; = ao+ a Eryryj—1 + asEryrij—2, 7 = 2.



Forecast: ARMA (p,q)

Yp =00+ @Yy - F Ol e+ Fiao + o+ g

By = agtaye+ -+ + 015+ + g1
Ewyrog = ap+arEyypeg +-- -+ Uplft2—p T .ﬁgft + -t .ﬁth—l—?—q

By = a0+ Birg1+ -+ 0By + .:'quft
Ewyerj = ao+arBaypejo1 + -+ by, 7> 0.
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Forecast Evaluation Methods 1/4
Fit the best £ Forecast the best.

1. Regression-based method: (1) Apart the sample {1}, into two parts {y: }.,
and {yt}fﬂu _1. the first of which 1s used for estimation and the second for
forecasts; (2) Construct one-step-ahead or j-step-ahead forecasts {ﬁ}f:% It
(3) Regress y, on a constant and f, fort = Ty+1,- -+, T, i.e. 1, = ag+a, fi+uy,
and apply the F-test to test the null ag = 0 and a; = 1. Rejecting the null
means that the forecast is poor. If the significance levels from the F-tests
of different models are similar, select the model with the smallest residual

variance Var(v;).
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Forecast Evaluation Methods 2/4

2. MSPE-based method: Construct MSPE = Eil e? for different models,

where H is the number of observations in the holdback period (the second

part of the sample), e; is the forecast error. Take the larger MSPE of the two

models 1n the numerator and construct the F-test

kRl LAl Ll LAWLLAL L Ll LAk W i UV

MSPE, Y1 ¢,

1

MSPE, SH 2

=] T4t

F

The assumptions for the F-distribution are: e; ~ N/(0, 62), Eee;_. =0(s # ()
and Eejzeor = 0. The violation of any one of the assumptions will lead to the

tallurc of the F distribution.
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Forecast Evaluation Methods 3/4

3. The Granger Newbold(1976) test: (Eejzes; = 0 is violated). Set

Ty = €11 €9 5t = €13 — €
{ U ]. 1 oer LY.
o
p,, = Exz=Eet, — Eel, < (), modecl 2 has a larger MSPE
= (), models 1,2 have the same MSPE
Under the null of equal forecast accuracy for the two models, p,. = Fe?, —
F;‘E%i = (), 1.e. 7y and z; are uncorrelated. Let .. 18 the sample version of p__ .

then 7,/ \/ (1—72)/(H—1) ~t(H—1). Examine the sign of this t-statistic

and the significance of the t-test.
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Forecast Evaluation Methods 4/4

4. The Diebold-Mariano(1995) test: (Even the first two assumptions e; ~ N/(0, 6°)
and Fee; ; = 0(s # 0) are not required). Use a more general loss function

of the forecast error g( ;) instead of the quadratic one e?. Let

d = Eg = —Z ) — g(e)) d/+/var(d) ~ N(0,1)

d d
' Id. ) is seriallv lated = ~ i =)
If {d;} is serially uncorrelate Vet NE o o1
\/ Lwi=1\Gi — @)%/ — 1)

If {d.} is serially correlated and (v,.---,7v,) # 0.

DM = J/\/(% L2y 4+ +2y)/(H—-1) ~t(H~1), (l-step-ahead)

DM = d/\/(yo+27, + - +2,)/(H+1— 2+ Hj(j — 1))
~ t(H — 1), (j-step-ahead). >




