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ffDifference Equation
E  th  l  f  i bl    f ti   Express the value of a variable as a function 
of its own lagged values, time, and other 
variablesvariables.

 The trend and seasonal terms are both 
functions of timefunctions of time.

 The irregular term is a function of its owns 
lagged al e and of the stochastic a iableslagged value and of the stochastic variables.

 Time-series Econometrics: estimation of 
diff  ti  t i i  t h ti  difference equations containing stochastic 
components. 
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Difference EquationDifference Equation
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ff lDifference Equation: Examples
 Random walk: y =y +u Random walk: yt =yt-1+ut

 Reduced-form and Structural equation:
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Difference Equation: Constant Coefficients
 Linear parametric difference equation: Linear parametric difference equation:
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where n is the order of the difference equation; 
xt is the forcing process that can be any function 
f f

1i

of time, current and lagged values of other 
variables or stochastic disturbances. 

 A modified version: A modified version:
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 A solution: a function of the elements of {xt} 

and t or some given values of the {yt} (initial 
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t
conditions).



Solve Difference Equation: AR(1)    (1/4)
It ti  th d Iterative method:

 Example 1:
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A  l i  h d

Solve Difference Equation: AR(1)    (2/4)
 An alternative method:

 Homogeneous equation:

 General Solution: If a1 is not equal to 1

S    l l t  A t  bt i   i l l ti   So we can calculate A to obtain a special solution 
from the general solution by a given initial 
condition  e g  at t=0  y=y
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condition, e.g. at t=0, y=y0.



Solve Difference Equation: AR(1)    (3/4)
 Obtain a special solution satisfying the initial condition y Obtain a special solution satisfying the initial condition y0 :
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（叠代至t=0时止）
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 在 时，也可由通解方程和初始条件确定

再将A代回通解方程 解出y
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再将A代回通解方程，解出yt。

 The solution shows that, when |a1|>=1, each disturbance 
has a permanent non-decaying effect on the value of yt.     
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has a permanent non decaying effect on the value of yt.     
 Stability Condition:



l ff A 时间路径 /Solve Difference Equation: AR(1)时间路径 (4/4)
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The Cobweb Model:  AR(1)
d
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Solve Difference Equation: AR(2)    (1/4)

 AR(2):
 Homogeneous Equation: g q

 Assume              and obtain the  Assume              and obtain the 
characteristic equation: 
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 Homogeneous Solution:

Solve Difference Equation: AR(2)    (2/4)
 Homogeneous Solution:

 Stability Condition:
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Solve Difference Equation: AR(2)    (3/4)
 Example 1: y 0 2y +0 35y Example 1: yt=0.2yt-1+0.35yt-2

The two characteristic roots are 0.7, -0.5.

yt=0.7t+(-0.5)t                                  yt=1.037t+(-0.337)t

 Example 2: yt=0.7yt-1+0.35yt-2
The two characteristic roots are 1 037  0 337
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The two characteristic roots are 1.037, -0.337.



Solve Difference Equation: AR(2)    (4/4)

 General Solution for
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Solve Difference Equation: AR(n)    1/2
 Difference equation: n
 Difference equation:

 First  solve homogeneous solution of                 :       
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t t tA A A    The linear combination: 
 At least one characteristic root equals one if
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a1+a2+…+an=1.



Solve Difference Equation: AR(n)    2/2
 Particular solution for Particular solution for
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If  includes both deterministic and stochastic terms,

insert into the difference equation and solve '
t
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Lag operator
 Linear operator Linear operator
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Some Processes
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Stationary Process and Autocorrelation
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 AR(1):                             where a is not equal to 1

Conditions for AR(1) Stationary Process
 AR(1):                             where a1 is not equal to 1.
 For any given initial condition y0  (suppose not random)

 y0 can not be fixed! It should be a random variable.
 Restrictions:             i e  A=0; y is a random variable; Restrictions:             i.e. A=0; y0 is a random variable;
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 ARMA(2 1):

Conditions for ARMA(2,1) Stationary Process
 ARMA(2,1):
 One Restriction on homogeneous solution:
 Try a particular solution: Try a particular solution:

 Hence:                                                where

 If the characteristic roots of ARMA(2,1) lie within the unit 
circle         is a convergent sequence and {y } is stationary:
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circle,        is a convergent sequence and {yt} is stationary:



A Th b SA Theorem about Stationarity
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Conditions for            Stationary Process
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Conditions for  AR(p) Stationary Process

 AR(P):
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Conditions for  ARMA(p,q) Stationary Process

 ARMA(p,q):
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Autocorrelation function ACF     1/4
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Autocorrelation function ACF     2/4
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Autocorrelation function ACF     3/4
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Autocorrelation function ACF     4/4
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Partial Autocorrelation Function: PACF   1/2
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ACF and  PACF   1/2
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ACF and  PACF   2/2
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Sample ACF and PACF   1/2

where y* is the subtracted mean of  the series from each observation
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Sample ACF and PACF   2/2

34



T f A d A /Testing for AR and MA       1/2
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T f A d A /Testing for AR and MA       2/2
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Model Selection of  Lags
U  AIC  SBC Use AIC or SBC:
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d l A ) /Model Estimation: AR(1)     1/4

The joint density of the sample:

38



d l A ) /Model Estimation: AR(1)      2/4
 The log likelihood of the sample: The log likelihood of the sample:
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d l A ) /Model Estimation: AR(1)      3/4

equivalent to minimization of
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Model Estimation: AR (1)           4/4
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Model Estimation: AR (p)
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Model Estimation: MA (1)        1/3
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Model Estimation: MA (1)       2/3
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Model Estimation: MA (1)       3/3

When              , we obtain the previous case.
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Model Estimation: MA (q)       

Conditional MLE is reasonable only if   all the inverse characteristic roots 
46

y
for the MA lie outside of  the unit circle.



Central Limit Theorem for Time Series

• Central Limit Theorem for Stationary Time Series.
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Three-Stage Model Selection: Box-Jenkins   1/2

 Identification: Examine the time plot of the 
series (data), the ACF, and the PACF visually.

 Estimation: Fit the suggested models under 
stationarity and examine the estimates of 
parameters in the ARMA models. Select the 
model with parsimony, where Q-statistic, 

C d S C d f d l lAIC, and SBC are used for model selection.
 Diagnosis: Plot the residuals from the 

estimated model to look for outliers and for 
evidence of periods in which the model does 

t fit th  d t  ll
48

not fit the data well.



Three-Stage Model Selection: Box-Jenkins   2/2
N tNotes:
(1)  If all the plausible ARMA models 

estimated above show evidence of a 
poor fit during a reasonably long portion 
of the sample, consider multivariate 
estimation methods; 

(2)  If the variance of the residuals is 
increasing or has some tendency to g y
change, use a logarithmic transformation 
or ARCH techniques.
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Forecast: AR(1)

Th f bi d b h li d li j i
50

The forecasts are unbiased, but the quality declines as j increases.



Forecast: ARMA(2,1)
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Forecast: ARMA(p,q)

52



Forecast Evaluation Methods    1/4
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Forecast Evaluation Methods    2/4
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Forecast Evaluation Methods    3/4
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Forecast Evaluation Methods    4/4
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