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Abstract

A multivariate fractional Brownian motion (mfBm) with component-wise Hurst exponents
is used to model and forecast realized volatility. We investigate the interplay between cor-
relation coefficients and Hurst exponents and propose a novel estimation method for all
model parameters, establishing consistency and asymptotic normality of the estimators.
Additionally, we develop a time-reversibility test, which is typically not rejected by real
volatility data. When the data-generating process is a time-reversible mfBm, we derive op-
timal forecasting formulae and analyze their properties. A key insight is that an mfBm with
different Hurst exponents and non-zero correlations can reduce forecasting errors compared
to a one-dimensional model. Consistent with optimal forecasting theory, out-of-sample fore-
casts using the time-reversible mfBm show improvements over univariate fBm, particularly
when the estimated Hurst exponents differ significantly. Empirical results demonstrate that
mfBm-based forecasts outperform the (vector) HAR model.

Keywords: Forecasting, Hurst exponent, multivariate fractional Brownian motion, realized
volatility, rough volatility

JEL classification: C12, C58

1. Introduction

Modeling and forecasting financial asset volatility play a crucial role in numerous ar-
eas of finance. In the univariate context, several stylized facts about volatility dynam-
ics—particularly long memory—have been well established since the seminal work of [Ding
et al. (1993)). Subsequent research has introduced multiple generations of long-memory
volatility models and their approximations, including contributions by Baillie et al.| (1996]);

Harvey| (2007));|(Comte and Renault|(1996)); |Corsi| (2009). |Andersen and Bollerslev| (1997) fur-

*R code that implements our estimators and estimates asymptotic variances can be found at https://fba.
um.edu.mo/wp-content/uploads/2025/04/BYZ.zip.
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ther elucidated the mechanisms generating long memory in volatility. A recent advancement

is the rough fractional stochastic volatility (RFSV) model of |Gatheral et al. (2018]), which

employs fractional Brownian motion (fBm) with a Hurst exponent H < 0.5. This model has

been linked to long-memory ARFIMA processes (Shi and Yul [2023; [Li et al., 2024; Wang and|

2023)) and has demonstrated superior forecasting performance, as evidenced by
et al.| (2018)) and Wang et al.| (2024).

It is well-documented that financial volatilities exhibit strong co-movement across assets
and markets. This stylized fact has spurred extensive research on multivariate volatility mod-

eling, including surveys of multivariate GARCH and stochastic volatility models

et al., 2006 Asai et al., [2006)). These frameworks effectively capture not only individual asset

volatilities but also cross-asset correlations, which are often even more critical for applica-
tions such as portfolio optimization and risk diversification. At the same time, they enhance
the accuracy of volatility forecasts for individual assets. In contrast, the existing literature
on fractional models predominantly concentrates on univariate approaches, neglecting the
correlation structure and probably resulting in inefficiencies.

This paper proposes modeling and forecasting realized volatility using a multivariate fBm

(mfBm) with component-wise Hurst exponents. The model extends the univariate fractional

Brownian motion (fBm) framework, building on foundational work by |Amblard et al.| (2013)

and |Coeurjolly et al. (2013]), which itself derives from the theoretical contributions of

vancier et al| (2009} 2010); Didier and Pipiras| (2011)). It retains the appealing properties

of univariate fBm—which has seen growing application across various domains—while ad-
dressing its limitations in capturing cross-sectional dynamics. The inclusion of component-
specific Hurst exponents introduces significant mathematical complexity. This leads to a

fundamental theoretical question that motivates our current investigation:

Can two real-valued processes exhibit markedly different autocorrelation structures and

persistence patterns while maintaining strong contemporaneous correlation? Q)

The mfBm framework allows for distinct Hurst exponents across components while cap-
turing their interdependencies through correlation parameters. Each component possesses
its own scale parameter, and cross-component covariances incorporate both correlation and
asymmetry parameters—the latter capturing lead-lag effects between series. As illustrated

in Figure these features provide preliminary evidence addressing question , with a com-
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Figure 1: Simulated sample paths of fBm with H; = 0.1 (top), and Hz = 0.4 (bottom), which are correlated
with p = 0.8 and zero asymmetry parameter.

prehensive analysis developed in the following section. Given the well-documented strong

correlation among realized volatilities (Ding et al., 2024), we investigate the forecasting

implications of multivariate rough fractional volatility modeling.

We propose a novel moment-based estimation method for all model parameters. The
Hurst exponents and scale parameters are estimated component-wise, while correlation and
asymmetry parameters are estimated pairwise. Under mild regularity conditions, we estab-

lish the consistency of these estimators. The new estimators are compared to the existing

estimators proposed by |Amblard and Coeurjolly| (2011). We demonstrate that our approach

yields substantially improved estimation of asymmetry parameters while maintaining com-
parable performance for other parameters. Furthermore, we derive the asymptotic distri-
bution of our estimators, enabling formal statistical inference. For forecasting applications,
we focus on the time-reversible specification of mfBm (with zero asymmetry parameters),
as our proposed hypothesis test fails to reject this null hypothesis for most assets at the 1%
significance level.

Our theoretical analysis of time-reversible mfBm for realized volatility forecasting yields
several key insights. First, forecasting improvements emerge when components exhibit het-
erogeneous Hurst exponents. Second, stronger cross-asset correlations further enhance fore-
cast accuracy. Contrary to traditional wisdom that correlation enhances forecasting ac-
curacy, the benefits of time-reversible mfBm depend critically on its Hurst exponents. We
implement this framework to model multivariate log realized volatility series while producing
univariate volatility forecasts. By partitioning the out-of-sample period into distinct tem-

poral windows, we identify significant efficiency gains from mfBm precisely when estimated



Hurst exponents diverge across assets. Conversely, when Hurst exponents are similar, mfBm
forecasts converge to their univariate fBm counterparts. These empirical findings robustly
confirm our theoretical predictions about the conditions under which multivariate modeling
provides forecasting advantages.

We empirically examine whether incorporating additional information through multi-
variate modeling necessarily improves forecasting efficiency by comparing the heterogeneous
autoregressive (HAR) and vector HAR models, where the univariate HAR serves as our
benchmark. While theory suggests that correctly specified multivariate models should out-
perform their univariate counterparts by leveraging additional information, our analysis
reveals two key findings: (1) Contrary to theoretical expectations, the vector HAR model
does not consistently deliver superior forecasting accuracy despite its richer information set;
and (2) When utilizing identical information sets, mfBm consistently generates more precise
forecasts than HAR-type models. These results demonstrate that mfBm’s mathematical
structure provides distinct advantages in effectively extracting forecasting value from mul-
tivariate information.

The remainder of this paper is organized as follows. Section [2] introduces the model and
explains the covariance structure and probabilistic properties of mfBm. Section [3] develops
our novel parameter estimators for mfBm and the associated asymptotic theory and pro-
poses a test for time-reversibility. Section[4] develops a formula for the optimal forecast with
time-reversible mfBm. Section [5| conducts a Monte Carlo study to examine the performance
of the statistical methods and the forecast formula. Section [f] conducts an empirical study
where mfBm is fitted to log realized volatility sequences and forecasting performance from
alternative models is compared. Section[7]concludes. An appendix collects proofs of the the-
orems in the paper. An online supplement collects proofs of the propositions in the paper,
details about HAR and vector HAR models, and additional empirical results. Through-
out the paper, we denote LN convergence in probability, A convergence in distribution, ~
asymptotic equivalence of real-valued sequences, 4 equality in distribution and log natural

logarithm.

2. Model, Correlation Structure and Properties

We begin with a review of univariate fBm and its key properties. A univariate fBm
(BH)ier is a continuous Gaussian process with almost surely continuous sample paths

satisfying: (1) Zero-mean: E[Bf'] = 0 V¢; (2) Covariance structure: Cov(B{%,,Blf) =



w(t, h, H) for t,h € R, where

wt,hy H) = = ([t B27 + |2 — |7 (1)

N

The process exhibits two fundamental characteristics: (1) Self-similarity: for any scaling

factor A > 0, (Bi) 2 (AB/T)

Lo (2) Stationary increments: for any s,t € R, B —

teRr’
BHE ~ N(0,]t — s|*). H € (0,1) governs both the covariance structure and self-similarity
properties. Three important properties emerge. (1) When H = 0.5, the process reduces
to standard Brownian motion; (2) When H # 0.5, fBm is neither a (semi-)martingale nor
Markovian; (3) The sample paths exhibit Holder continuity of order « for any v < H. For

discrete observations at intervals A > 0, the increment process (A;BH )i<i<n defined by

A,BH = Bfi — B(ng) A is a stationary Gaussian process whose autocovariance function is

2H
Cov (A;B",A;BM) = 5 (=7 +1)2" +(i—j—1)*" —2(i — 5)*") | for any i > j,
~ AP H2H —1)(i — §)*72, for large i — j. (2)

Equation (2) shows that for H € (0.5,1), (A;BH)1<;<, is serially dependent with positive
autocorrelations and its autocovariances are not absolutely summable. That is, it is a long-
memory process for H > 0.5. In contrast, if H € (0,0.5), (AiBH)lgiSn has negative
autocorrelations and

“+oo
> Cov(ABY,A;B") =0,
i—j=—00
such that the spectral density is zero at the origin. In this case, (AiBH)lgign is an antiper-
sistent, or short-memory, process.

The mfBm is an extension of the real-valued univariate fBm to a multivariate process
with similar properties and such that its components are fBms, with possibly different
Hurst exponents, which are not required to be independentﬂ The mfBm is defined by

Amblard et al.|(2013]) and its covariance structure can be introduced in a pairwise manner.

For simplicity, we focus on a bivariate setting in the sequel. The bivariate fBm (B;) =

2Tt should not be confused with the multifractional Brownian motion which is a univariate process with
time-varying Hurst function.



((Bt(l)7 BIEZ))T) is constructed as a Gaussian process satisfying self-similarity:

teR

((BS BI) ien £ (1 BO A=) ") o for A>0, (3)

te

where (Hy, Hy)" € (0,1)2. Each component is a fBm with Hurst exponent H; € (0,1) and

scaling parameter o; > 0. Their covariance functions are
, . 2
Cov (Bt(”,By)) _ % (|3|2Hi 2~ |s — t|2Hi> =o2w(t,s —t,Hy), i =12,

where o7 = Var(BY)) and w(,-,-) defined in . The cross-covariances of Bgl) and BEZ)
given in (Amblard et al.l [2013] Prop. 3) are more complex and divided into two cases: The

general case with Hy + Hs # 1 and the specific case with H; + Ho = 1.

1. If Hy 4+ Hs # 1, there exists (p,m12) € [—1,1] x R, such that

g10 : 1 2 : 1 2
Cov (BY, BY) =22 ((p+ masign(s)) 5|12 + (p = my,2 sign(t)) 1
~(p—mzsign(t - 5)) |t — 5" (4)

2. If H; + Hy = 1, there exists (p,71,2) € [—1,1] x R, such that

g10 - ~
Cov (BY, BY) = 222 (5 (|sl+]t|—|s — t))+ii2(t og [t —s1og |s|—(t—s) log |t — s]))

The existence of the process can be established through a spectral integral representation
(Amblard et al.; |2013] Sec. 3), provided the parameters are chosen such that the covariance
is well-defined (i.e., positive semi-definite). As the notation suggests, p = corr(B£1), Biz)) is
a correlation parameter. The second parameter carries a subscript to reflect its asymmetry:
M,2 = —N2,1 and 7; 2 = —72,1. This asymmetry arises when swapping the roles of the two
components, i.e., transitioning from (Cov(Bgl), Bt(z)) to Cov(Bt(l),B£2)). These asymmetry

parameters are defined by

1 2 2 1
E[B{"B?)] - E[B{* B"]]

771,2: 0.10.2(2_2H1+H2) ) lle‘i’HZ#]-?
]EB(I)B(2) _]EB(Q)B(U
P (B, B~ —E[B, 71]’ile+H2:1.
’ 0'10'2210g(2)

A key observation is that the cross-covariance function depends on the Hurst exponents

only through their sum. While the general covariance structure is complex and potentially



difficult to interpret, an important special case is the symmetric scenario where B; 4 B_,4,
which is particularly relevant for financial applications. This defines the bivariate time-
reversible fBm. In this simplified case, when asymmetry parameters vanish, the spectral
density becomes real, and the covariance turns symmetric. That is, COV(B§1)7Bt(2)) =

(Cov(Blgl)7 BgZ)). This is the process we consider in the forecasting application. It has the

following cross-covariance function

o pPO102

Cov(BY, B?) .

(1P + 1P = 1t = sP") = poroswitos —t.H),  (5)
where H = (H; + Hz)/2 denotes the cross Hurst exponent. This process possesses a co-
variance structure where the cross-covariances mirror the form of univariate fBm autoco-
variances, incorporating both a correlation coefficient p and the cross Hurst exponent H.
Importantly, the value of H determines the nature of interdependence. H < 1/2 results in
a short-range interdependent process, while H > 1/2 leads to long-range interdependency.

A multivariate process with asymmetric covariances—distinct from the well-known asym-
metry in return distributions—can induce lead-lag effects between components. Specifically,
one component influences another with a delayed reaction. Although this phenomenon is rel-
evant in certain applications (Wackernagel, 2003, p. 147), it appears less critical for volatility
time series. For realized volatilities, estimated asymmetry parameters are typically close to
zero. In Section [3] we develop a hypothesis test for time-reversibility. Empirical results
show that the null hypothesis cannot be rejected in most cases. Consequently, we focus on
the time-reversible mfBm in our forecasting exercise.

To ensure the covariance kernel of mfBm remains positive semi-definite, certain parameter
restrictions must hold. In this section, we examine these constraints for the bivariate time-
reversible fBm case. The more general setting, which incorporates asymmetry, leads to
greater complexity and less intuitive parameter coherence; we refer to (Amblard et al.l 2013]
Fig. 1) for illustrative examples. In the bivariate case, the correlation is bounded above by

a maximum value

(Hy, Hy) = \/sin(le) -sin(rHy) - T(2H; +1) - T'(2Hy + 1)
Pmazx 1,412) — sin(wH) . F(2H+ 1) .

For correlations p, with |p| < pmaz, time-reversible fBm exists; see (Amblard et al., |2013|

page 10). Due to the symmetry between positive and negative correlations, i.e., pmin =
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Figure 2: Maximal possible (absolute) correlation pmae of the bivariate time-reversible fBm with Hurst
exponents Hy and Has.

—Pmaz, We only display the maximal absolute correlation p;,q. in Figure

The plot resembles a heatmap, showing that smaller differences |H; — Hs| permit higher
correlations between components. Additionally, correlations tend to be larger when Hy, Ho, H
are closer to 1/2. In the special case where H = H; = Hy—which we term unifrac-
tional—there are no restrictions on p € [—1,1]. Here, the covariance structure simpli-
fies, as the same Hurst exponent H governs all autocovariances, both marginal and cross-
component. Only in this scenario can mfBm be represented as a linear transformation of a
vector of independent fBms, a property we exploit in certain proofs.

However, when Hurst exponents differ significantly, the constraints tighten. For example,
if H; = 0.2, Hy = 0.8, the maximal correlation drops to pmaz(0.2,0.8) = 0.662. This answers
our initial question : while not all combinations are feasible, the mfBm framework
still accommodates such cases. Remarkably, even when the components exhibit starkly
contrasting properties—one being rough and short-range dependent (H; = 0.2), the other
smooth and long-range dependent (H; = 0.8)—a substantial correlation (up to ~ 2/3) is
achievable. For more extreme disparities, such as H; = 0.1 and Hs = 0.9, the maximum
correlation further declines to ppq.(0.1,0.9) &~ 0.383. Sample paths illustrating such a
behavior, with Hy = 0.1, Hy = 0.4, p = 0.8, are shown in Figure[I]

In Figure 3] we examine three fixed correlation values: p = 0.5, p = 0.75, and p = 0.9,
shown in separate panels. The gray region in each panel represents the set of Hurst exponent
pairs (Hy, Hs), for which bivariate time-reversible fBm exists. These admissible regions
exhibit symmetry about the diagonal, a property that holds for all p € [-1,1]. Notably,
the diagonal itself always lies entirely within the admissible parameter space. The left panel
demonstrates that p = 0.5 is achievable for nearly all (H;, H3) combinations, with exclusion

limited to cases where |Hy; — Hs| approaches 1. The middle panel shows that p = 0.75



Figure 3: Parameter values for which bivariate time-reversible fBm exists (gray), and combinations that are
not possible (white). The left-hand side is for p = 0.5, the middle for p = 0.75, and the right-hand side for
p=0.9.

remains feasible for most parameter pairs, though the admissible region begins to narrow.
This restriction becomes particularly evident in the right panel (p = 0.9), where the gray
area contracts significantly, indicating stronger constraints on permissible Hurst exponent

combinations.

3. Statistics for Multivariate Fractional Brownian Motion

3.1. Observation model

Fractional time series models have demonstrated strong performance in volatility fore-

casting applications, as evidenced by (Andersen et al., 2003} |Chiriac and Voevl, 2011) and

related literature. Recent work, building on the framework established by
, has expanded this line of research to include fractional continuous-time models with
Hurst exponents H < 1/2. These approaches, grounded in fBm, have shown particular
promise for modeling and forecasting log-volatility processes.

Traditionally, fBm and its increment process—fractional Gaussian noise—were primar-

ily employed to model long memory phenomena. Given the well-documented presence of

long memory in volatility processes, (Comte and Renault| (1998) proposed using fBm with

Hurst exponent H > 1/2 capturing this persistence property. However, recent empirical

studies have consistently found that when modeling volatility using fBm, estimated Hurst

exponents typically fall below 1/2 (Gatheral et al., |2018} [Wang et al.| 2023 [Bolko et al.|

12023} [Fukasawa et al. [2022; [Bibinger and Sonntag] [2025). This is evident even from sim-

ple autocorrelation plots of the data, which typically show negative autocorrelations in the
increments. Therefore, the rough fractional stochastic volatility model from

(2018) has become increasingly popular and has been utilized already for options pricing

(Bayer et al., |2016} |Garnier and Sglna, 2018), variance swaps (Bayer et al.,|2016)), portfolio




choice (Fouque and Hu, |2018)), designing trading strategies (Glasserman and Hel 2020), and

dynamic hedging (Euch and Rosenbaum) [2018).

Akin to the approach of fractional time series in Andersen et al| (2003)), [Wang et al.|

(2023) employs discrete observations from fBm (or generalized fractional processes) to model
log realized volatility—an observable quantity. In contrast, recent theoretical work has

focused on latent spot volatility derived from discrete price recordings, providing evidence

of roughness in spot volatility (Chong et al., [2024; Bolko et al., [2023} Fukasawa et al., 2022).

Since our objective, like in|Andersen et al.| (2003); Wang et al|(2023), is to forecast realized

volatility, we adopt a modeling framework for this observable measure. Specifically, we treat
available time series as discrete observations of fractional processes, where Bt(i) is the log
realized volatility of asset ¢ at time ¢. This approach ensures that any empirical findings we
establish pertain strictly to realized volatility, not spot volatility.

Consistent with the existing literature that employs univariate fBm for modeling and
forecasting log realized volatilities, we adopt a statistical observation model based on eq-
uispaced high-frequency observations over a fixed time interval, such as [0,1]. While the
univariate framework provides valuable insights, extending the statistical inference methods
to the multivariate case offers greater practical utility. We therefore consider observations

specified by
-
_ (pM) @ (d) ; ; _
(Bj ) = (BjA,BjA,...,BjA) , 0<j<mn, withA=1/n,

where d denotes the dimension of B;a and asymptotic results are established under the

asymptotic scheme where A — 0, n — ooEl

3.2. Ezxisting estimation method

The first and only available parameter estimation method for mfBm was introduced in

'/Amblard and Coeurjolly| (2011). Let B} denote the time series obtained by applying the

3The same high-frequency asymptotics have been employed in existing literature dGatheral et al.I, |2018|;
. However, our theory and proofs for mfBm leverage self-similarity to extend beyond
high-frequency settings—for instance, to low-frequency data over long time spans (i.e., ' — oo with A fixed
where A = T'/n). This long-span asymptotic scheme does not universally apply to univariate fractional
models, as many rely on high-frequency assumptions to handle drift terms. In contrast, our results depend
solely on self-similarity and the framework of for sums of transforms of Gaussian time series,
rather than triangular arrays.

10



m-th dilated version of a filter to the d-dimensional Bya, where m is an integer ancﬂ

At /m, iftemz

a;” = )
0, ift¢mzZ
with Z = {0,1,2,...}. To be more specific, the i-th component of B}y, denoted by B,(:i’m,

is

(i),m m (%)
BA™ Z a; B_pya
teZ

The estimation principle for the case H; + H; # 1 in |Amblard and Coeurjolly| (2011)

relies for a given m > 1 on the theoretical covariance

m — (i),m (4),m
COVZ(hA) :=COV(B™ BT 1)

%% i . .
-7 j Z arar (pij — nigsign(h +m(t — 1)) |(h 4+ m(t — 1)) A7+
t,lEZ

forall i, =1,...,d, and its empirical estimator
m )7 (3)m
Cij (hA) n_ ml h Z B B(k—i—h)A
k=ml+1

Subsequently, the differences between the theoretical covariances and their empirical coun-

terparts are

€y, =log O3 (0) —1log COV (0),
€r,. =log |C7H(0)| — log [COV;2(0)],

ef =log (0.5/C (miA) — C(miA)]) — log (0.5[COVT(mIA) — COVIH(mIA)]).

Amblard and Coeurjolly| (2011 proposed to estimate the Hurst exponents, scaling, corre-

lation and asymmetry parameters by minimizing the following weighted mean squared error

44 is in the set of filters,

Apg = {(at)tez tap =0,Vt € Z7 U{l+1,...,+00} and Ztlat =0,Vi=0,...,q— 1} R
tEZ

where Z— = {...,—2,—1,0}, | and g be two positive integers. Typical examples are the difference filter
and its compositions, Daubechies wavelet filters, and any known wavelet filter with compact support and
a sufficient number of vanishing moments.

11



over all values of m taken from a discrete set M:

d d d
D | we D@D Fwe Do () Fwaa Y ()
meM i=1 i=1,5>i i=1,5>i

Amblard and Coeurjolly| (2011) state that in a typical setting one can choose the weights
w, = wgq = 0, which is what we adopt in the present paper. Moreover, [Amblard and Coeur-
jolly| (2011)) prove that the estimator is consistent regardless of the choice of weights. They
also provide the condition under which the estimator is asymptotically normally distributed.
However, the complexity of the asymptotic variance expression poses significant challenges

for constructing asymptotic confidence intervals in practice.

3.8. Our estimation method

Like the method of |[Amblard and Coeurjolly| (2011)), our new estimation method is also
based on moments. The estimators of H; and 0‘]2 are based on the marginal distributions
of mfBm, while correlation and asymmetry parameters are estimated pairwise. Recall the
notation for increments (AkB(j))lgkgn, defined by A,BU) = B,(CjA) — BEZlDN which we use
in the sequel with the components BU) |1 < j < d.

For a simple notation, consider the estimation of a bivariate fBm with components B(1),
and B® | and with Hurst exponents H;, Hs, correlation p, variance parameters o7, 03, and

asymmetry parameter 7; 2. The Hurst exponent is component-wise estimated with

n—1 MV 2

R A 5B@)

= ———1o (Z’“—l( L )2),.7:1,2, (6)
21og(2) Sr_, (AkB(J))

with the short notation Ak_’QB(j) = Béi)ﬂm — Bgillm, j = 1,2, for lag-2-increments. Then,

the variance parameters can be estimated component-wise with

n N2
52 - Zim (ABO)T (7)
Jj ’[’LA2FIJ' y J = 1,4

To estimate p and 71,2, as in |Amblard and Coeurjolly| (2011), we restrict to the case
that Hy + Hy # 1, which is relevant for modeling realized volatility, as prior studies (e.g.,
Gatheral et al.| (2018); [Wang et al.|(2023)) and our own estimates of roughness (reported in

subsequent sections) consistently find Hurst exponents below 0.5. Our proposed estimators

12



of p and 1,2 are

ZZ:1 AkB(l) . Ak3(2)
Vo (AeBO)Y Y (8B
i i (kB ABY - A BY - ALBX)
it (BeaBO) S (AraB®) — 25, (AeBO)E S, (AB2)
(8b)

p=

(8a)

The estimators constitute proper statistics that depend solely on observed increments. In the
construction of p, the identical normalizing factors in both the numerator and denominator
cancel out in the ratio. For #); 2, the covariance structure introduces an additional factor
9Hy+Hp

— 2 in the numerator’s expectation. This explains the inclusion of lag-2-increments

in the denominator—their specific form ensures cancellation of this factor.

3.4. Asymptotic properties of estimators and a test for time-reversibility

The proposed estimators @ are consistent for general bivariate fBm under
mild regularity conditions. Tables[8and [9report the estimated parameters from our dataset.
The Hurst exponents are all below 0.5, the correlations of increments across components are
approximately 0.3, and the asymmetry parameters are close to zero. The presence of nonzero
correlations supports the adoption of a multivariate modeling framework, while the near-zero
asymmetry parameters justify a focus on the time-reversible case. We derive the asymptotic
distribution for the bivariate time-reversible fBm and develop a formal hypothesis test for
Hy : m2 = 0. The test results provide strong statistical evidence in favor of the time-
reversible modeling assumption. Our asymptotic theory require the additional restriction
H < 3/4, a condition satisfied by empirical estimates of realized volatility roughness, as

discussed earlier.

Theorem 3.1. For a general bivariate fBm satisfying max(Hy, Hy) < 3/4, Hi+Hy # 1, the

component-wise estimators obey the following asymptotic property: For each j, as n — oo,
H; 5 Hy, a(H; — Hy) % N(0, AVARy, ), 9)
J

where

1

oo 2
74+§ <r+12HJ‘+ r—lQHJ'—2r2HJ‘)

r=1

AVARy; =

13



e 2
+ 27453 (4 225 | — 225 — 2y 2

r=1

o
2
_ 21—2Hj § :(|’I”+ 1|2Hj + ‘T _ 2|2Hj _ |’I“|2Hj _ |’I“— 1|2Hj) ) )
r=1

Under the same conditions, for each j, as n — oo,

A2 P2 \/ﬁ A2 2\ 4 4
7% Tog(n) (67 —0j) = N(0,AVARy - 407). (10)

Remark 3.1. The component-wise estimators f{j and 6;, for j = 1,2, are unaffected by
asymmetry. Their estimation results remain invariant regardless of whether the underlying

model is a general bivariate fBm or a bivariate time-reversible fBm.

The estimator @ achieves consistency with the optimal parametric convergence rate of

/n when H; < 3/4. This condition mirrors the requirement for limit theory of normal-

ized realized variances in univariate fBm (see, e.g., Nourdin et al| (2010)). While general

asymptotic theory for univariate fBm estimators based on first-order increments exists (e.g.,

(Coeurjolly| (2001)), we provide a complete proof for (9] to derive explicit variance formulas

for our standard estimator @ Alternative estimators using second-order increments, sim-
ilar in form to @, can be constructed to satisfy central limit theorems for all H € (0,1)
. Such second-order increment statistics have been extensively studied (e.g.,
Bégyn| (2007)), Wang et al. (2023)), Bibinger and Sonntag| (2025)). However, our estimator

@ offers two key advantages: (1) a simpler asymptotic variance structure, and (2) uni-
formly smaller variance across H € (0,3/4) compared to second-order increment estimators.
These properties make @ particularly suitable for rough volatility series with small Hurst

exponents. The convergence rate in , including its logarithmic factor, is also optimal

(Brouste and Fukasawa), 2018, Section 4.1). Notably, the relationship between asymptotic

variances in (ED and ([L0|) parallels that of second-order increment estimators in Theorem 4.1

of Wang et al.| (2023).

Theorem 3.2. For a general bivariate fBm with max(Hy, Hy) < 3/4, Hy + Hy # 1, as
n — oo, we have

ﬁ1,2 £> m,2, 771)2 —M,2 = Op(’n_l/Q).

In the time-reversible case, it satisfies a central limit theorem with an asymptotic variance

AVARy, ,(Hy, Ho, p) given by in Appendix.
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Based on the developed asymptotic theory for #; 2, in the following corollary, we propose

a test for time-reversibility.

Corollary 3.1. Given a bivariate fBm with max(H;, Hy) < 3/4, Hy + Hy # 1, the test

rejects the null hypothesis m1 2 = 0, in favor of the alternative hypothesis that n1 2 # 0, when

NG el g1 ap), (11)
\/AVARﬁl,z(HlaH%ﬁ)

where o € (0,1), and ® is the cumulative distribution function of the standard normal. This

test attains the asymptotic size o and the asymptotic power 1.

Remark 3.2. There are several advantages in our estimators relative to those proposed by
Amblard and Coeurjolly (2011). First and foremost, our estimators have closed-form expres-
sions, facilitating the computation. Second, our estimators have simpler asymptotic variance
structures that are more straightforward to estimate. Third, our asymmetry parameter es-
timator shows superior performance compared to that of |Amblard and Coeurjolly (2011),
as demonstrated in Table [3.  This improvement is notable given [Amblard and Coeurjolly
(2011)’s own observation that estimating m o was “very difficult to estimate, at least with

the method adopted here”. Our approach successfully overcomes this estimation challenge.

Theorem 3.3. For a bivariate time-reversible fBm with max(Hy,Ha) < 3/4, |p| < 1,

Hy{+ Hy; #1, asn — oo, we have

n71A7H1*H2 ZAkB(l) . AkB(2) £> ¢ = poi0s,
k=1

\/ﬁ(n—lA—Hl—Hz S ABW . ABO) - g) Y N(O, 02021+ p> + p*ur + Uz)) , (12)

k=1
where
1 oo
v = Ul(HhHQ) = § Z (l,r 4 1|H1+H2 4 |T _ 1|H1+H2 _ 2‘T|H1+H2)27 (13&)
r=1
1 oo
v2 =g Z (Ir + 125 4 — 1200 — 2\r|2H1) (Ir + 12H2 4 | — 122 — 2\r|2H2) . (13b)
r=1

Under the same set of assumptions, the estimator p defined in satisfies, as n — oo,

pB o Va(p—p) S N(o, AVAR,3> : (14)
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where

AVAR, = (1 — p2)? + p? ((1 + p2)vy (Hy, Hy) + v1(H21,H1) + v1(H22,H2) — vg(Hy, H)

—U3(H2,H1)) + Vg,

(oo}
vs(Hy Ha) = 3 (Ir+ 1250 o — 12— 2 [PH0) (jp - 1[FHH g q | Ht e gt H),

r=1
Remark 3.3. p—p = O]p(n_l/Q) will generalize to a general bivariate fBm. A mon-zero
asymmetry parameter will just influence the asymptotic variance, which we compute for the

time-reversible case of interest.

Remark 3.4. When we set all series coefficients (vi,va,vs3) in Theorem to zero, the
resulting asymptotic variances correspond exactly to those of a multivariate i.i.d. model—or
equivalently, a multivariate Brownian motion. Specifically: (1) For the empirical covariance
in (12)), the asymptotic variance reduces to (1 + p?)oio3; (2) For the empirical correlation

in , the asymptotic variance becomes (1 — p?)2.

4. Optimal Forecast

Given the empirical evidence showing only weak asymmetry in multivariate volatility dy-
namics, we recommend employing time-reversible mfBm for modeling log realized volatility.
In what follows, we examine the forecasting advantages offered by this modeling approach.

The conditional expectation represents the optimal forecast in that it minimizes the
mean squared forecast error (MSFE). In practice, almost always discrete observations over
multiple periods are available. Consequently, the optimal forecast of the mfBm is obtained
through conditional expectation based on the multivariate normal distribution’} Consider
one has equispaced discrete observations X ¢ = {Ba, ..., Bia} from a d-dimensional mfBm
B=(BW,...,B)T where A is the sampling interval and ¢ is the number of periods where

the mfBm is observed. In the volatility literature, the length of a year is conventionally

5When continuous records are available, there exist formulas for generating the optimal forecast. For ex-
ample, in an idealized continuous-time setting where a univariate fBm is observed over the infinite past
(—o00,t], (Nuzman and Poor} [2000, Eq. (34)) derive the conditional expectation for the process at future
time ¢ + h. However, this result cannot be directly applied in practice due to two key limitations: (1)
real-world observations are available only at discrete time points, and (2) historical data spans a finite,
rather than infinite, time window. To address these constraints, |Gatheral et al.| (2018) propose necessary
modifications to the original formula. As comprehensively reviewed in|Wang et al.| (2024), the method pro-
posed by |Gatheral et al.| (2018) performs worse than the conditional expectation based on the multivariate
normal distribution.
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normalized to 1. Hence, for A = 1/12,1/52,1/252, X, 4 represents monthly, weekly, and

daily observations accordingly. We stack the data X; 4 into a column vector, such that

1 d 1 d
Xa=BY,... B ... BY,... BT,

(4)

The optimal h-step-ahead forecast of B( h)A

forany j € {1,...,d}, is again the conditional

mean and has a closed-form expression of the form

A

(4) _ (4) _(d YTyt
B aiana = E[B(g+h)A|Xt,d} = (Mn) Zia Xed, (15)

where ¥; ; denotes the covariance matrix of &; 4, whose elements are readily obtained from

()

and 'yfih is a vector that contains the covariance of B(t +h)

A With each entry of & 4,
which are also readily obtained from .

Since the explicit formula is generally complex, the forecasting advantages of this
modeling approach over the univariate framework are not immediately apparent. To de-
velop key insights into forecasting within the mfBm model, we begin with simplified sce-
narios—specifically, the optimal forecast based on a single observation: (1) single-period
forecasts in bivariate settings, and (2) their multivariate extensions, for which explicit ex-
pressions for the weights in are available. The general case, involving multiple observa-
tions of discretized paths, will be treated later. This approach is inspired by known results
for univariate fBm, where optimal forecasts assign maximal weight to the most recent ob-

servation and nearly all weight to only a few recent data points—a pattern demonstrated in

Wang et al.| (2024).

4.1. Optimal forecast with observations in one period

In this subsection, we first assume that a single observation in a bivariate setting is the
only available data. For simplicity, we ignore the sampling frequency A and denote the

observation as (Bgl), Bt(2)). Recall that H = (Hy + H2)/2.

Proposition 4.1. Consider a bivariate time-reversible fBm (Bt(l),Bt(Q))T. The optimal

h-step-ahead forecast of Bt(_l‘_)h, conditional on Bt(l), B§2), is given by

(1) 1 (2
Bt+h|t = wtl}rhn : Bf ) + wtlih\t - By ) ) (16)
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for any p € (—1,1), with weight functions

1 1 w(t, h, Hy) cw(t, h, H)
Wetnlt = 7 2 ( 2, P T pH )7
_ 4 01 (w(t7haH) w(tvhaH1)>

12
Wetn|e = 12H> 12H

1—p2 0y
where w(t, h, H) is defined in . Its MSFE is

o2  (w(t, h, Hy))?
1— P2 t2H1

E[(Et(i)h\t - Bt(-l&-)h)2:| = ot (t+h)*™ —

252H t2H2

o?p? (2w(t,h, H)w(t,h, H) (w(t,h, H))?
1—p? ( - ) '

The roles of both components are symmetric and can be interchanged. We now exam-
ine important implications arising from Proposition Incorporating Bf@ consistently
improves forecasting accuracy by reducing the MSFE, or at worst maintains equivalent per-
formance. This improvement becomes evident when we express the term (1 — p?)~! as
1+ p?/(1 — p?) and represent the reduction in forecasting error relative to the univariate
case as a squared quantity. Regarding the role of each parameter, the MSFE of Bt(-l‘r)hl , does

not depend on o5; only the Hurst exponents and correlation coefficients are relevant. We

highlight several key special cases related to these parameters.

e If Hi = Hs = H, then wﬁhlt = 0 for any p. Thus, in the unifractional case, the
optimal forecast coincides with the optimal forecast conditional on Bgl) only. That is,
we do not attain any gains from observing the second component Bt(Q). The MSFE is

O'%((t + h)2H1 _ (w(t,h,Hl))2t72H1)v and wtlj-hlt = w(t,h,Hl)t*QHl.

e If p =0, then wtlihlt = 0 for any Hs. Hence, the optimal forecast coincides with the

optimal forecast conditional on B,El) only.

Contrary to traditional wisdom that correlation enhances forecasting accuracy, the benefits
of time-reversible mfBm depend critically on its Hurst exponents. Additionally, for arbitrary

parameter values, the weights satisfy the following limiting behavior as the forecast horizon

12

thnle 0.

approaches zero: w — 1 and w

11
t+hlt

Figure [4] illustrates the role of the Hurst exponents in determining the weights by fix-
ing the moderate and empirically relevant coefficients at p = 1/2 and H; = 0.4, while

allowing H, to vary. The other parameters are set to 01 = 02 = 1, t = 1, and h = 1.

Although in this case the weight function is drawn over the whole support Hy € (0,1),
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Figure 4: Relative weights w%‘ll/(|w%|11| + \w%fl\) (left) and w%fl/(\w%m + |w%‘21\) (middle) and

wé‘lltzHl Jw(1,1, Hy) (right), for parameters p = 1/2, 01 = 02 = 1 and H; = 0.4 as functions of Ha.

some parameter configurations, especially when Hy takes values close to the boundaries, are
not possible. Over these sub-intervals the function is drawn with a dotted red line. The
left panel presents the relative weight when the first component is forecasted, computed as
w;‘ll / (\wé‘l1| + |w%|21 ). The middle panel shows the relative weight on the other component,
computed as w;ﬁ (\w%‘lﬂ + |w%‘21|)) The right panel plots w%llltzHl/w(l,LHl), which is
the ratio of the values of the first weight when p = 0.5 and those when p = 0, the latter
coinciding with the factor of the univariate forecast based on observing Bt(l) only.

Several observations emerge. First, in general, the weights on the second component are
nonzero, indicating that relying solely on the first component’s own past observation leads
to inefficiency in forecasting. Second, as predicted by our theory, when Hy, = H; = 0.4,
all the weight is placed on Bt(l), and Bf@ is not used in the forecast, despite the moderate
correlation coefficient p = 1/2; as shown in all three panels. Third, the sign of the weight
depends on the relative magnitude of Hy and H;. The middle panel shows that the relative
weight is a strictly increasing function: it equals zero when Hs = 0.4, becomes negative
when Hy < 0.4, and approaches 0.3 as Hs nears 1. Fourth, the right panel shows that
w%‘lthHl Jw(1,1, Hy) is strictly decreasing, implying that the univariate forecast shifts from
underweighting to overweighting its own past observation as Hs increases.

The left panel of Figure [5| displays the relative MSFE for forecasting Bgl) based on
(B§1)7 B§2)), relative to the univariate benchmark that uses only B%l), corresponding to the
parameter settings in Figure[d The values are hence normalized so that the maximum equals
1. In all cases where H; # Hs, we observe efficiency gains (values below 1) relative to the
univariate forecast, with the improvements being meaningful. If we increase the correlation
coeflicient to p = 0.9, as shown in the right panel, the forecast error reduction becomes more

pronounced, highlighting the role of correlation in enhancing bivariate forecast.
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Figure 5: Relative MSFEs as functions of Hy for t = 1, h =1, 01 = 02 = 1, with p = 0.5 and H; = 0.4
(left), with p = 0.9 and H; = 0.4 (right).
Propositions [£:2] and [.3] extend our bivariate results to the general d-dimensional setting.
A key finding that persists in this broader context is the absence of forecasting gains from

multivariate modeling when all Hurst exponents are equal.

Proposition 4.2. Consider a time-reversible mfBm (B,gl),...,Bgd))T, and denote ¥ =

(Zij)1<ij<d € R4 the positive definite covariance matriz of (Bgl), ey B£d))T, with inverse
Y= ((27Y4j)1<ij<a- The optimal h-step-ahead forecast of Bt(}r)h, given Bt(l), ceey B,gd), is

given by
1) - (9)
(1 1j j
By fhe = Zwt-ji-hlt By (17)
i=1

where

d
15 _ 1 w(t,h7 (H1 +Hk)/2) .
wlpy = Sk )kj( VI, Ty 1<j<d.
k=1

A key remaining question concerns how higher dimensions (d > 2) may further reduce
forecasting errors when (1) correlations are non-zero and (2) Hurst exponents differ across
components. The following specific result provides valuable insight through its tractable
closed-form expressions, revealing how forecast accuracy improves with increasing dimen-

sionality.

Proposition 4.3. Consider mfBm with dimension d > 2, with O'JQ- =1 for all j, and all
correlations equal to p > 0. Assume Hy is the Hurst exponent of (Bt(l)), while (B,Sj)) has

Hurst exponent H;y = H # Hy, for all2 < j < dﬁ The optimal forecast for Bt(i)h, given

6We slightly abuse the notation here as H is not the average of all Hurst exponents.
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Figure 6: Ratios of MSFE in Prop. [4.3] with p = 0.8, H; = 0.4, H = 0.1, and that in the univariate model,

for t =1,h =1 (left) and ¢t = 10, h = 1 (right), as a function of dimension d. The horizontal reference lines
show the limits as d — oo.

(B,El)7 B,Ez), ce B,fd))T, has the following expression for MSFE

31 D2 w ah7H1 2
E[(Bt(+)h\t =B ] = (P - (d— 2)p1— (d—1)p? <(1 s 2)p)((tt27fz1))
w 1)wii, n, wl(t, h, 2
- pp HERIRORI gL ER ),

In particular, a strictly positive limit exists as d — co.

Since the equal correlation condition requires p € (—(d—1)71, 1), we restrict our analysis
to p > 0 in Proposition which is empirically relevant. Figure[f]illustrates the results by
plotting the relative MSFEs for t =1 and t =10, h =1, p = 0.8, H; = 0.1 and H = 0.4.
Here, the relative MSFE is normalized by the minimal univariate MSFE and evaluated across
dimensions d = 1,...,100. The horizontal lines indicate the asymptotic limits as d — oo.

Compared to the bivariate case, incorporating additional components significantly re-
duces the forecast error. However, the risk does not vanish as d increases. In fact, for the
scenario in Figure [] the MSFE improvement becomes almost negligible beyond d > 20.
The limiting relative MSFE as d — oo settles around 89% of the minimal univariate case for
t = 1. Setting t = 10, yields a smaller limit of approximately 77.4% (even for much lager ¢,
the limit further decreases only slightly). Thus, Proposition presents a mixed outcome

for forecasting efficiency: while substantial gains are achievable by increasing dimensionality,

these gains plateau early, and the forecasting risk remains bounded away from zero.
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4.2. Optimal forecast with all historical observations

Proposition [£.4] establishes that, for a bivariate time-reversible fBm with identical Hurst
exponents Hy = Hy; = H, observing the historical path of the second component B§2)
provides no additional forecasting benefit. This result extends naturally to the d-dimensional

case in Proposition provided all Hurst exponents coincide.

Table 1: Bias, standard error (asymptotic standard errors in parentheses) and RMSE of our method: H; =
0.1, H, =04,02=1,02 =1, p=0and 11,2 = 0 (denoted 7 in the table).

Hy Hy ot 02 P n

Bias  0.0013  -0.0012  0.0567  0.0222  0.0015  0.0003
0.0441  0.0356  0.3449  0.2934  0.0482  0.1192
n=500,A=1/52  Std
(0.0431)  (0.0351) (0.3404) (0.2774) (0.0472) (0.1137)

RMSE  0.0441 0.0357 0.3496 0.2943 0.0483 0.1192

Bias  -0.0009  0.0001  0.0144  0.0156  -0.0005  -0.0041
0.0293  0.0248  0.2246  0.1977  0.0334  0.0788

n=1000,A=1/52  Std
(0.0305) (0.0248) (0.2407) (0.1962) (0.0334)  (0.0804)

RMSE  0.0293 0.0248 0.2250 0.1984 0.0334 0.0789

Bias  -0.0014 -0.0025  0.0837  0.0445  -0.0011  -0.0017
0.0430  0.0353  0.5132 04075  0.0480  0.1109
n=500,A=1/250  Std
(0.0431)  (0.0351) (0.4756) (0.3876) (0.0472) (0.1137)

RMSE  0.0430 0.0354 0.5203 0.4101 0.0480 0.1110

Bias  -0.0005  0.0001  0.0399  0.0366 -0.0015  0.0022
0.0301  0.0246  0.3285  0.2800  0.0333  0.0759

n=1000,A =1/250  Std
(0.0305)  (0.0248) (0.3363) (0.2741)  (0.0334)  (0.0804)

RMSE  0.0301 0.0246 0.3309 0.2824 0.0334 0.0760

Proposition 4.4. Consider a bivariate time-reversible fBm with a positive definite covari-
ance and Hi = Hy = H. The optimal forecast for Bfi)h, given t discrete observations
(BS)7 B(AQ)), e, (Bt(i), BEZ)), does not depend on the component of (B®) and coincides with

the optimal forecast based on univariate fBm.

The proof of Proposition .4 benefits from a more explicit and transparent representation
of the conditional expectation in the bivariate case compared to the general d-dimensional
setting. Nevertheless, the overarching result in Proposition and its proof strategy follow

a similar approach.
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Proposition 4.5. Consider a time-reversible mfBm with a positive definite covariance and
all component-wise Hurst exponents equal. The optimal forecast for Bt(i)h, given t discrete
observations (B(Al)7 e B(Ad))7 el (Bt(i), e Bt(i)), does only depend on the first component

(B(l)) and coincides with the optimal forecast based on univariate fBm.

5. Monte Carlo Study

5.1. Finite-sample performance of proposed estimators

We first examine the finite-sample performance of the proposed estimators. Since our
estimators are derived either component-wise or pairwise, we consider the bivariate time-
reversible fBm without loss of generality. Two parameter settings in the rough region are
considered: {Hj, Ha,0%,0%,p12} = {0.1,0.4,1,1,0}, {0.1,0.4,1,1,0.4}. We set the sample
size to n = 500, 1000, A = 1/52, 1/250, and conduct 1000 replications.

Tables report the bias, the standard deviation, and the root mean squared error
(RMSE) of the estimators across replications, with the standard error implied by our asymp-
totic theory in parentheses. The proposed method performs well and the empirical standard
deviation is accurately predicted by the asymptotic theory.

We next evaluate the finite-sample performance of our proposed estimators in comparison
with those from |Amblard and Coeurjolly (2011)). As our estimators are consistent for general
mfBm, we can evaluate their performance when 7; 2 # 0. We focus on the bivariate case,
as [Amblard and Coeurjolly (2011) noted that estimating 7, o was "very difficult" with their
method. If their estimator for 1, 2 performs poorly in the bivariate case, it is unlikely to
improve in higher dimensions, whereas our estimators are dimension-independent. Four
parameter configurations are considered: {Hi, Hs,0%,03,p12,m2} = {0.1,0.4,1,1,0,0},
{0.1,04,1,1,0,0.5}, {0.1,0.4,1,1,0.4,0}, {0.1,0.4,1,1,0.4,0.5}. The sample size is set to
n = 500, 1000, and the sample interval A to 1/250. For clarity, we denote our estimators
as BYZ and those from |[Amblard and Coeurjolly| (2011) as AC. The AC estimators are

implemented using Coeurjolly’s SimEstFBM.R package with its default configuration.
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Table 2: Bias, standard error (asymptotic standard errors in parentheses) and RMSE of our method: H; =
0.1, Hy =04, 0’% =1, a% =1, p=0.4 and 11,2 = 0 (denoted 7 in the table).

H, H, of o3 p n

Bias  -0.0029 -0.0011  0.0214  0.0206  0.0006  0.0024
0.0420  0.0341  0.3285 02738  0.0402  0.1019

n=500,A=1/52  Std
(0.0431)  (0.0351) (0.3404) (0.2774) (0.0394) (0.1036)

RMSE  0.0421 0.0341 0.3294 0.2747 0.0402 0.1019

Bias  -0.0007 -0.0011  0.0157  0.0084  -0.0006 -0.0014
0.0300  0.0250  0.2225  0.1990  0.0284  0.0746

n=1000,A=1/52  Std
(0.0305) (0.0248) (0.2407) (0.1962) (0.0279) (0.0733)

RMSE  0.0300 0.0250 0.2230 0.1991 0.0284 0.0746

Bias  -0.0008 -0.0005  0.0868  0.0726  0.0014  0.0041
0.0421  0.0353  0.4956  0.4242  0.0388  0.1080

n=500,A=1/250  Std
(0.0431)  (0.0351) (0.4756) (0.3877) (0.0394) (0.1036)

RMSE  0.0421 0.0354 0.5034 0.4306 0.0389 0.1081

Bias  -0.0032  0.0003  0.0149  0.0387  -0.0013  0.0000
0.0306  0.0250  0.3275  0.2889  0.0280  0.0744
(0.0305)  (0.0248) (0.3363) (0.2741) (0.0279) (0.0733)
RMSE  0.0308  0.0250 03279 02915  0.0280  0.0744

n = 1000, A = 1/250 Std

Table [3] presents the bias, standard deviation, and RMSE of both estimators across 1000
replications. Our estimator for p shows slightly inferior performance compared to that of
Amblard and Coeurjolly| (2011), while our estimator for 7; » demonstrates substantially
improved accuracy, particularly when 7,2 = 0. For instance, when p = 0.4, 712 = 0,
and n = 500, the RMSE ratio for p is 100.3%, indicating nearly identical performance,
whereas the ratio for n; o is 34.8%, clearly favoring our estimator. Real-data results echo
this scenario where 1,2 = 0, providing further support for the practical relevance of our
estimation approach.

Notably, when p = 0, an interesting contrast emerges: while the estimator from [Am-
blard and Coeurjolly| (2011]) exhibits smaller variance, our estimator achieves significantly
reduced bias. For both parameters (p and n12), we find that when their true values are
near zero—a scenario explicitly excluded in the construction of |Amblard and Coeurjolly
(2011)’s estimators—their estimators exhibit substantial bias. Although their correlation
estimator maintains reasonable RMSE performance, their asymmetry estimates suffer from

severe bias. Overall, our estimators deliver smaller biases and markedly improved statistical
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Table 3: Bias, standard error (asymptotic standard errors in parentheses), and RMSE of 2 methods for
different combinations of p and 71,2 (denoted 7 in the table), with H; = 0.1, H> = 0.4, cr% =1 and a% =1.

n = 500 n = 1000
BYZ AC BYZ AC

p n P n p n p n
Bias | -0.0006 -0.0009 | 0.0383  0.3096 | 0.0027 0.0037 | 0.0274  0.2090
p=0 | Std | 0.0473 0.1156 | 0.0231  0.1487 | 0.0342 0.0812 | 0.0164  0.0997
n=0 | RMSE | 0.0473 0.1157 | 0.0447 0.3435 | 0.0343 0.0813 | 0.0319  0.2316
Bias | -0.0022 0.0005 | -0.0026 0.2843 | -0.0012 -0.0018 | -0.0014  0.1936
p=04| Std | 0.0381 0.1093 | 0.0380 0.1407 | 0.0276 0.0735 | 0.0269  0.0950

n=0 | RMSE | 0.0382 0.1093 | 0.0381 0.3173 | 0.0276 0.0735 | 0.0270  0.2157
Bias | -0.0010  0.0040 | 0.0361 -0.0415 | 0.0009 0.0050 | 0.0255 -0.0770

p=0 | Std | 0.0474 0.1296 | 0.0228 0.2042 | 0.0329 0.0961 | 0.0151  0.1617
n=05| RMSE | 0.0474 0.1298 | 0.0427 0.2085 | 0.0329  0.0962 | 0.0297  0.1791
Bias | 0.0017 0.0051 | -0.0011 -0.0573 | 0.0006  0.0037 | -0.0013 -0.0852
p=04 | Std | 0.0372 0.1279 | 0.0358 0.1835 | 0.0269 0.0874 | 0.0253  0.1468
n=05 | RMSE | 0.0372 0.1280 | 0.0358 0.1924 | 0.0269 0.0875 | 0.0253  0.1697

Table 4: Size and power of the test for 71 2 (denoted 7 in the table).

n=0 n=01 n=02 n=03 n=04 n=05 n=06 n=0.65

1% significance level

n =500 0.0120 0.0616 0.2608 0.6214 0.8852 0.9856  0.9986 0.9998
n = 1000 0.0122 0.1074 0.5556 0.9230 0.9978  1.0000  1.0000 1.0000

5% significance level

n=>500 0.0582 0.1610 0.4806 0.8126 0.9634 0.9972  1.0000 1.0000
n =1000 0.0526 0.2742 0.7736 0.9772 0.9996 1.0000  1.0000 1.0000

inference for 7, o compared to |[Amblard and Coeurjolly| (2011)).

5.2. Size and power of the test

To examine the size and power of the proposed test, we consider the following parameter
configurations, which are empirically relevant: H; = 0.1, Hy = 0.4, p = 04, A = 1/250,
0? =1, and 03 = 1. The true value for 7, o varies over the interval [0,0.65]. The sample
sizes are set to 500 and 1000, and the number of replications is 5000. The test has good
size when 17 2 = 0 with the nominal sizes close to the real sizes in finite sample. Moreover,
testing at both 1% and 5% significance levels, we find the procedure maintains good finite-
sample properties (Table. Consistent with theoretical expectations, the test’s power grows
monotonically as the true n; 2 value deviates further from zero and gets larger for a larger

sample size.

5.8. Finite-sample performance of optimal forecasts

This subsection examines potential improvements in out-of-sample forecasting accuracy
through mfBm modeling. While Section [4.1] established theoretical foundations through

Propositions under simplified conditions, we now conduct numerical simulations to
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assess forecasting performance in empirically realistic settings. We design three Monte Carlo
experiments. In all experiments, we generate forecasts based on the first 500 observations
(n = 500) sampled at frequency A = 1/250. Through 10,000 Monte Carlo replications,
we compute the root MSFE (RMSFE). Each replication simulates 505 observations to ac-
commodate forecast horizons h € {1,...,5}. To isolate the pure forecasting gains from
estimation effects, we assume that ¥ and H are known in these simulations.

The first Monte Carlo experiment is designed to investigate how forecast gains vary with
inter-component correlation. Using simulated data from a bivariate time-reversible fBm
with Hurst exponents H; = 0.1, Hy = 0.4, we evaluate three distinct correlation structures

for ¥ (i.e., p=0,0.4,0.8):

1 0 1 04 1 038
, and
0 1 04 1 08 1
Table 5: RMSFEs of h-day-ahead forecasts for BEZLh)A’ with and without taking the other component into

account. The theoretical RMSFEs are in the brackets.

=1 ‘ =2
Corr =0
.4845 .5084 .5237 .5389 .5501 .1093 1441 .1683 .1881 .2040
fBmé&bfBm
(4802) (.5077) (.5254) (.5387) (.5495) | (.1085) (.1430) (.1681) (.1886) (.2061)
Corr =0.4
.4832 5119 .5239 .5370 .5551 .1096 .1433 .1689 .1899 .2080
B (4802) (.5077) (.5254) (.5387) (.5495) | (.1085) (.1430) (.1681) (.1886) (.2061)
4794 .5080 .5203 .5337 5517 .1088 1424 .1680 .1888 .2066
b (.4756)  (.5035) (.5213) (.5348) (.5456) | (.1075) (.1417) (.1666) (.1869) (.2043)
Corr = 0.8
.4839 .5044 .5220 .5370 .5492 .1085 .1420 .1683 .1883 .2067
o (.4802) (.5077) (.5254) (.5387) (.5495) | (.1085) (.1430) (.1681) (.1886) (.2061)
.4286 .4502 .4698 .4830 .4940 .0946 1224 1441 .1593 1734
b (4246) (4526) (A700) (4827) (.4927) | (.0953) (.1242) (.1443) (.1602) (.1734)

The results, presented in Table [5] reveal two key findings. First, incorporating the sec-
ond (correlated) component in bivariate fBm (bfBm) yields significant improvements over
univariate fBm forecasting. Second, these gains increase monotonically with the absolute

correlation strength. As expected, forecasts coincide when p = 0 due to component inde-

26



pendence. For p = 0.4, we observe moderate efficiency gains, while p = 0.8 demonstrates

the potential for substantial RMSFE reduction (up to 15.4% in our simulations).

The second experiment is designed to examine how gains depend on the differences

between Hurst exponents. We fix 0% = 03 = 1, p = 0.4, and allow (Hy, Hz) = (0.1, 0.1),

(0.1, 0.2) and (0.1, 0.4). The RMSFE is computed from 10,000 replications. Results are

given in Table [6] Consistent with our theoretical insights, gains become more pronounced

for increasing differences between the idiosyncratic Hurst exponents.

The third experiment is designed to examine gains when including more components of

mfBm. Assume there are three components with H; = 0.1, Hy = H3 = 0.4, and

Table 6: RMSFEs of h-day-ahead forecasts for B

Y=

1
0.4
0.4

)

(t+h)A’

0.4 0.

4

1 0

0 1

into account. The theoretical RMSFEs are in the brackets.

with and without taking the second component

h=1 h=2 h=3 h=4 h=5 ‘ h=1 h=2 h=3 h=4 h=25
i=1 ‘ i=2
Hy=0.1,H;=0.1
4754 .5103 .5348 .5396 .5533 4847 .5143 5321 .5356 .5469
fBmé&bfBm
(.4802)  (.5OTT)  (.5254) (.5387) (.5495) | (.4802) (.5077) (.5254) (.5387) (.5495)
Hy=0.1,H, =02
4818 .5098 .5226 .5375 .5495 .3019 .3425 .3670 .3904 .4059
B (.4802)  (.bOTT)  (.5254) (.5387) (.5495) | (.2999) (.3411) (.3682) (.3890) (.4061)
.4810 .5093 5217 .5370 .5492 .3013 .3420 .3665 .3900 .4055
b (.4795)  (0.5071) (.5249) (.5382) (.5490) | (.2995) (.3407) (.3679) (.3887) (.4058)
Hy=01,Hy, =04
.4832 5119 .5239 .5370 .5551 .1096 .1433 .1689 .1899 .2080
B (.4802)  (.5OTT)  (.5254) (.5387) (.5495) | (.1085) (.1430) (.1681) (.1886) (.2061)
4794 .5080 .5203 .5337 5517 .1088 1424 .1680 .1888 .2066
b (A756)  (.5035)  (.5213)  (.5348)  (.5456) | (.1075) (.1417) (.1666) (.1869) (.2043)

We evaluate three forecasting approaches: univariate fBm, bfBm, and three-dimensional

mfBm (mfBm3). The forecasting results are reported in Table As expected from the

theoretical insights, including more correlated components further increases the forecasting

performance. By further incorporating an additional component that is correlated only with
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the first component, with H4 = 0.4, such that

1 T

w,
Sy = 041 with I the (3 x 3) identity matrix and wo4 = (0.4,0.4,0.4)7,

wo4 I3

the forecasting error will be reduced accordingly.

Table 7: RMSFEs of h-day-ahead forecasts for BW with and without taking other components into

(n+h)A?
account. The theoretical RMSFEs are in the brackets.

h 1 2 3 4 5 1 2 3 4 5
Y= Y=,

4784 .5025 .5213 .5361 .5458 .4833 .5081 .5293 .5359 .5463

fBm
(.4802) (.5077) (.5254) (.5387) (.5495) | (.4802) (.5077) (.5254) (.5387) (.5495)
4740 14982 B177 5328 .5427 4783 .5040 .5248 5318 5421

bfBm
(.4756)  (.5035) (.5213) (.5348) (.5456) | (.4756) (.5035) (.5213) (.5348) (.5456)
.4656 .4919 .5108 .5266 .5352 .4697 4970 5176 .5249 .5351

mfBm3
(.4686) (.4969) (.5150) (.5286) (.5396) | (.4686) (.4969) (.5150) (.5286) (.5396)
.4586 .4852 5053 .5136 .5225

mfBm4
(.4563) (.4851) (.5035) (.5173) (.5284)

In sum, we draw the following conclusions about efficiency gains from mfBm based on

the analytical and simulation results:

1. If all Hurst exponents are identical, the forecasts based on fBm and mfBm coincide.

Hence, there is no efficiency gain.

2. If all correlations are zero, i.e., X is diagonal, the forecasts based on fBm and mfBm

coincide. Hence, there is no efficiency gain.

3. In a scenario that is not covered by the previous two cases, the forecast efficiency im-
proves compared to the univariate model. Larger differences between Hurst exponents

lead to larger efficiency gains. Larger absolute correlations between components lead

to larger efficiency gains.

4. Including more correlated components yields further improvements of the forecasting

performance.
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6. Empirical Study

Volatility modeling and forecasting have been subjects of significant interest for decades.

Recent advances in continuous-time finance highlight the strong performance of rough fBm

and rough fOU processes in volatility forecasting. In this study, we investigate the practical

implications of using rough mfBm and its associated theoretical framework. Our analysis

focuses on daily realized volatilities of the Dow Jones 30 (DJ30) constituents from March

28, 2013, to August 21, 2021—a span of eight years—using data provided by Risk Labm

Table 8: Estimates of H and p for 7 Dow Jones 30 stocks between March 28, 2013, and August 21, 2021.

Ticker H Correlation estimates

AAPL | 0.28 | 1.00

ALD 0.19 | 0.39 1.00

AMGN | 0.21 | 0.37 0.31 1.00

AXP 0.22 | 0.38 0.39 0.30 1.00

BA 0.25 | 0.38 0.36 0.29 0.36 1.00

BEL 0.18 | 0.34 0.33 0.27 0.37 0.27 1.00
CAT 0.21 | 0.37 0.38 0.25 0.41 0.32 0.30 1.00

Table 9: Estimates of the asymmetry parameter based on and test outcomes at the 1% significance
level based on Corollary for 7 Dow Jones 30 stocks between March 28, 2013, and August 21, 2021.

[ AAPL ALD AMGN AXP BA BEL CAT
ALD 0.17
Reject
AMGN 0.02 -0.12
Not reject Not reject
AXP 0.09 -0.18 0.05
Not reject Reject Not reject
BA 0.11 -0.10 -0.01 -0.02
Not reject Not reject Not reject Not reject
BEL 0.17 -0.06 -0.01 -0.02 -0.05
Reject Not reject Not reject Not reject Not reject
CAT 0.08 -0.05 0.03 0.00 0.09 -0.02
Not reject Not reject Not reject Not reject Not reject Not reject

7See Dacheng Xiu’s website:

https://dachxiu.chicagobooth.edu/#risklab.

29


https://dachxiu.chicagobooth.edu/#risklab

Table 10: RMSFE alternative models for h-day-ahead forecasts of RV during 3 forecast periods

h=1 h=2 h=3 h=4 h=5 h=10 h=15 h=20

March 20, 2015 to July 30, 2021

fBm 0.0592 0.0698 0.0764 0.0816 0.0848 0.0964 0.1048 0.1119
bfBm  0.0589 0.0694 0.0758 0.0809 0.0841 0.0952 0.1034 0.1103
mfBm3  0.0590 0.0694 0.0758 0.0809 0.0840 0.0950 0.1031  0.1099
mfBm4  0.0589 0.0694 0.0758 0.0808 0.0840 0.0950 0.1030 0.1099
mfBm5 0.0589 0.0694 0.0758 0.0809 0.0840 0.0952 0.1031  0.1100

March 20, 2015 to April 11, 2017

fBm 0.0514 0.0621 0.0674 0.0715 0.0719 0.0806 0.0863 0.0941
bfBm  0.0504 0.0608 0.0655 0.0691 0.0693 0.0764 0.0811 0.0881
mfBm3  0.0504 0.0606 0.0654 0.0689 0.0690 0.0758 0.0803 0.0874
mfBm4 0.0503 0.0606 0.0654 0.0687 0.0687 0.0759 0.0798 0.0869
mfBm5 0.0503 0.0607 0.0655 0.0688 0.0688 0.0761 0.0800 0.0870

April 12, 2017 to July 30 2021

fBm 0.0628 0.0734 0.0805 0.0862 0.0906 0.1034 0.1129 0.1199
bfBm  0.0628 0.0734 0.0805 0.0862 0.0906 0.1033 0.1129 0.1198
mfBm3  0.0628 0.0734 0.0805 0.0862 0.0907 0.1032 0.1128 0.1196
mfBm4  0.0628 0.0734 0.0805 0.0863 0.0907 0.1033 0.1128 0.1197
mfBm5 0.0628 0.0734 0.0805 0.0863 0.0907 0.1034 0.1130 0.1199

6.1. Estimation results

Under the assumption that a single log realized volatility series follows fBm, we use
the method-of-moment defined in @ to estimate the Hurst exponents. To model multiple
log realized volatilities jointly, we assume the data-generating process follows the time-
reversible mfBm, with parameters estimated using the methodology developed in Section
For brevity, we present the point estimates of H and p’s for the first seven Dow Jones 30
stocks in alphabetical order in Table We also report the point estimates of the asymmetry
parameter and the test outcomes at the 1% level in Table @ Table |8 suggests that there
are significant differences among the estimated Hurst exponents and that the estimated
correlation parameters are not close to zero. According to our theory, mfBm should offer

forecasting improvements over univariate fBm.

8We report more empirical results for 20 Dow Jones 30 stocks in Tables B.12 and B.13 in the Online
Supplement.

30



6.2. Forecasting results

For brevity, we focus on forecasting the realized volatility of AAPIEL examining whether
incorporating additional cross-asset information enhances predictive accuracy. Using a two-
year rolling window approach, we compare forecasts derived from AAPL’s historical data
alone—as is standard in the literature—with those augmented by data from four additional
stocks (ALD, AMGN, AXP, and BA), selected alphabetically. We evaluate five model spec-
ifications in terms of RMSFE, progressively expanding the asset set: fBm (AAPL), bfBm
(AAPL and ALD), mfBm3 (AAPL, ALD and AMGN), mfBm4 (AAPL, ALD, AMGN and
AXP) and mfBm5 (AAPL, ALD, AMGN, AXP and BA). The forecast period is between
March 20, 2015 and July 30 2021.

The top panel in Table [10| reports RMSFEs for five competing models for the full fore-
cast period. It is clear that bfBm outperforms fBm and, in some cases mfBm processes
outperform bfBm, consistent with the prediction of our theory.

Figure[7]displays the sequences of the rolling window estimates of the Hurst exponents for
each log realized volatility series. It reveals a key pattern: after 2017, the estimated Hurst
exponents for AAPL and other assets converge, with their differences approaching zero.
This observation motivate us to split the forecast period into two distinct time intervals:
from March 20, 2015 to April 11, 2017, from April 12, 2017 to July 30, 2021. As the
differences between the estimated Hurst exponents are large in the first forecast period, we
expect substantial gains in using mfBm over fBm. Whereas, the estimated Hurst exponents
converge in the second forecast period, we expect no gains in using mfBm over fBm.

To validate our theory, we report RMSFEs in the middle and bottom panels of Table [I0]
for the two forecast periods, respectively. In the first period, mfBm demonstrates superior
forecasting performance compared to fBm. Conversely, in the second period, the forecasts
generated by mfBm and fBm become nearly identical. This empirical evidence strongly

supports our analytical conclusions.

6.3. More information necessarily leads to efficiency gains?

Our analysis naturally prompts two fundamental questions: First, what justifies our use

of the mfBm framework over conventional multivariate time series models? Second, does

9We also obtain similar results using both log realized volatility and realized volatility, which is consistent
with the theoretical predictions. Since realized volatility is of greater interest, we focus on reporting the
results based on realized volatility.
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incorporating additional information (e.g., moving from univariate to multivariate specifi-
cations) necessarily yield efficiency gains in forecasting? These questions address both the

methodological choice and the practical implications of model complexity.

Figure 7: Rolling window estimates of H for log realized volatilities

(a) AAPL (red line) and ALD (blue line) (b) AAPL (red line) and AMGN (blue line)

2015 2017 2019 2021 : 2015 2017 2019 2021

(¢) AAPL (red line) and AXP (blue line) (d) AAPL (red line) and BA (blue line)

2015 2017 2019 2021 2015 2017 2019 2021

Given the HAR model’s established role as a benchmark in volatility forecasting, we sys-
tematically compare the performance of univariate HAR and vector HAR (VHAR) specifica-
tions to evaluate whether increased information incorporation necessarily improves forecast
accuracyH The VHAR model can be viewed as a multivariate approximation of a long-

memory vector autoregressive fractionally integrated moving average (VARFIMA) process

(Chiriac and Voev}, 2011), in a manner similar to the HAR model. To do so, we forecast

AAPL’s realized volatility using the same set of information sources (AAPL, ALD, AMGN,
AXP, and BA) across the same five progressively expanded model specifications as before.
Instead of expanding the specification from fBm to mfBm, we now expand the specifica-

tion from HAR to VHAR. To maintain parsimony, we assume a diagonal covariance matrix

10The detailed specifications of HAR and VHAR models can be found in Online Supplement.
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structure for the error term €;, enabling computationally efficient row-by-row estimation and
forecasting. Table [11] reports RMSFE for HAR and four VHAR models.

Contrary to conventional expectations, our analysis reveals that the multivariate vector
HAR model underperforms its univariate counterpart. By examining Table [T and compar-
ing it with Table [I0] we draw the following conclusions: First, unlike the mfBm framework,
which benefits from incorporating additional information, the vector HAR model fails to im-
prove forecasting accuracy. Second, when using the same information, the mfBm generally
delivers more accurate forecasts than HAR-type models. Given the strong performance of
fBm-based models, the mfBm emerges as a powerful tool for leveraging extra information to
enhance predictions. These findings underscore a key advantage of the mfBm framework: its
unique capacity to effectively utilize additional information where traditional multivariate

approaches fall short.

Table 11: RMSFE of HAR-type models for h-day-ahead forecasts of RV between March 20, 2015 and July
30 2021

h=1 h=2 h=3 h=4 h=5 h=10 h=15 h=20

HAR  0.0597 0.0695 0.0760 0.0813 0.0862 0.0995 0.1015 0.1044
VHAR2 0.0603 0.0702 0.0779 0.0849 0.0916 0.1093 0.1137 0.1182
VHAR3 0.0607 0.0706 0.0779 0.0844 0.0905 0.1063 0.1129 0.1208
VHAR4 0.0607 0.0712 0.0791 0.0862 0.0928 0.1071 0.1172 0.1193
VHAR5 0.0614 0.0717 0.0798 0.0868 0.0936 0.1061 0.1131 0.1212

7. Conclusion

This paper introduces the first multivariate rough fractional volatility model, proposing
a time-reversible multivariate fBm to jointly model a panel of realized volatilities. We
develop the moment-based estimation method and investigate its asymptotic properties.
We establish theoretical results on optimal forecasts, demonstrating that the multivariate
model outperforms its univariate counterpart when correlations are non-zero and Hurst
exponents differ across components. Empirically, the model delivers significant efficiency
gains in volatility forecasting compared to both univariate and benchmark approaches.

During the preparation of this paper, we became aware of an independent study by [Dugo
et al.|(2024), which constructs a multivariate fractional Ornstein-Uhlenbeck (mfOU) process.
While their work primarily explores probabilistic properties rather than feasible estimation

and forecasting, they also motivate their model using the concept of rough volatility.
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Our study opens several promising avenues for future research: (1) Asymmetric fore-
casting theory—developing a general theoretical framework for forecasting with asymme-
try, which could broaden the model’s applicability across different financial contexts. (2)
mfOU modelling and forecasting—investigating the modelling and forecasting performance
of mfOU processes and assessing their potential practical advantages over existing ap-
proaches. (3) Efficient estimation methods—exploring improved estimation techniques, such
as maximum likelihood estimation for mfBm, and quantifying the expected efficiency gains
relative to current methods. (4) Structural break analysis—extending the model to in-
corporate change-point detection, as suggested by the regime-switching behavior observed
in AAPL’s Hurst exponent, to better identify and interpret structural shifts in volatility

dynamics.
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Appendix A. Proof of Theorems

Appendiz A.1. Proof of Theorem[3.]]
For components (p, q) € {1,...,d}?, the covariance of the kth and jth increments, (j, k) €

{1,...,n}?, of the time-reversible mfBm yields

(Cov(AkB(”), AjB(‘I)) = Pp.qOpo AT Han (K —j), (A1)
where the dependence on time, or the lag [ € Z, is via the function

o) = 5 (104 1 41— 1t gyt (A2)

The function is symmetric in the sense that -y, (1) = 7, 4(—1). For the correlation parame-
ters, we use the notation p,, =1, for p = q. For p = ¢, we further write shortly ~, instead
of vp p- It holds v, 4(0) = 1, for any p,q. Having Gaussian processes, a crucial ingredient to
compute variances and covariances of our statistics, is obtained from the Isserlis’ theorem

(Tsserlis| (1918))):

Cov(AxBWA;BW A;BMAB®) = Cov(ArBW, A;BM)Cov(A;BW, A B®)  (A.3)

+ Cov(AxB®W), Ay B®)Cov(A; B9, A;BM),

for all (p,q,7,s) € {1,...,d}* and (j, k,1,i) € {1,...,n}*. We obtain the following variances

of suitably normalized realized volatilities:

—2H, —4H,
Var(A Z(AkB(p))2) _aT Z COV((AkB(p))27(AlB(P))2>

Vin k=1 o <ki<n
A—4Hp
e Y 2Cov?(AxBP, AB®P)
" <ki<n
&1 20,
= Tp ’Yi(k )
1<k,I<n
20, 1 - 2
= =2 (my2(0) +2)_(n—1)2(r))
r=1
- n—r
= 2024, (1 +2 Z 'yf,(r))
r=1
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With dominated convergence, we obtain that

72HP n

v kz (A.B®) ) — 20 (1 +2i7§(r))

=1 r=1

lim Var (

n—oo

e 2
A2 U;L(g +3 (\r FA2E 4 1PH 2|r\2Hp) ) .
r=1

Applying twice the mean value theorem for differentiation with the functions z +— z2», and

x> z2Hr—1 we find that

(r+ 1250 4 (r — 1)He — 2(r)?He = 2, (2501 — P07

— 2H,(2H, — 1),

with some & € (r,r +1),r € N, and ¢, € (§-1,&) C (r — 1,7+ 1). This suffices to
see (based on a majorant and minorant) that the series Y 2, 72(r) converges if and only
if H, € (0,3/4). Similar arguments apply to upcoming series expressions in the proofs.

Univariate central limit theorems

\/H(A—;Hp zn: (AkB(P))2 _ ai) N(O o (2 + Z "+ 1‘2Hp - |2Hp . 2|r|2HP)2))
k=1

r=1

are known to hold in this case by an application of the celebrated limit theorem by [Breuer
and Major| (1983)) with the Hermite polynomial  ++ 22 — 1 of Hermite rank 2. For its rank,
it suffices to see that E[(X? —1)X] = 0 and E[(X? — 1)?] = 2 # 0, for a normalized centred
normal random variable X.

Next, consider lag-2-increments, which equal (telescoping) sums of increments:
Ne2B® =B =B = ABP + A BW ke {1, n—1}.

It holds that

Cov(Ap2BP) A1 3BP) = Cov(AyB® + Ay B® ABP + A BP)

= Ao (29, (k= 1) + yp(k+ 1= 1) + 9 (k — 1 — 1))

by linearity. Note the relation 22/» = (2+,(1) + 2) for the variances. This relation and

applying the Isserlis formula directly to lag-2-increments, what is possible, yields a simple
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computation of the variance

— —4H,
Var( Z (A 2B®) ) A Z 2Cov?(Ag2B®, A ,B®)
k=1 1<k,i<n—1
204 n—2 ,
= (= nE+ 207 +2 Z(n — 1= 1) (29(r) + 3+ 1) + 3 = 1))

(2 24H 42 71177& Z'YP(T)JF’YP(TJFHJFVP(T*1))2) '

With dominated convergence and elementary transformations, we obtain that

A_QHp n—1
nlin;ovar( NG (Ak,23<p))2) (2 9, | 42 29, (r) + Y (r + 1) + (1 — 1))2)
k=1 r=1
A > 2
= ot (20240 4 3 (I 220 4 [ — 22— 2y 2Hr) ).
r=1

Since we sum over all k, and do not only use half of the observations, this is not obvious from
the above asymptotics of the realized volatility. A central limit theorem follows analogously

as for the realized volatility. For the covariance of both statistics, we use that

(COV(AkB Al 2B p)) (COV(AkB AlB(p) +Al+1B(p))

=Nl (yp(k =) +ypk—1-1)), 1<k<n1<I<n-1.

We derive that

A—2H, 5 A—2H, 171 ) A—4H,
Cov (AxB®)", (A2B®)7) = 2Cov? (AxB®W), Ay, BW)
P> R e EE B
1<I<n—1
204
:Tp Z ('Yp(k_l)+’7p(k_l_1))
1<k<n
1<I<n—1
20’4 n—1
=2 (2(n— 1) (3(0) + (1 +Z (n =1 = D) () + 2 (r + )" + D (0 = 1) (3p(r) + 3 = 1))
r=2
n—1
=408 3" T (g () + 3 (r - 1)
r=1
such that with dominated convergence
C A7 & (A (p) 2 A2 A, 5, B® 3
lim Co B B =4 +7(r—1
=00 V< \/ﬁ ; ’ \/ﬁ 1:1(12 )) U;( () 717( )>
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o0
2
= oy D (I 1P e = 2P [ fr =12
r=1

If we show for scalar products (-, - ), with any o € R?, that

s ()2
< ( ;AkBp

(A.4)
with the bivariate normal
Z~N(< 0 ) ( AVAR;; AVAR;, ))
0 )"\ AVARy;, AVARy, /)’
where
e 2
AVARy; = o} (2 +y (|r L e 2\r|2H”) ) , (A.5a)
© ) 2
AVAR s = 0;;2 (\T + 125 | — 22Hr — |p|2Hr — |p — 1|2HP) , (A.5Db)
r=1
> 2
AVARy; = 0, (2 M 4 Z (|r + 212He | — 2)2He — 2\7’|2HP) ) : (A.5¢)
r=1
the Cramér-Wold device implies the bivariate central limit theorem
AP S (A B2 g2
N o 2=t (BB =0 4 7. (A.6)

A_;Hp Z;%(Ak,QB(p))z - 22Hpo.2

By self-similarity B,(fA) < AHy B,(f ), such that (instead of a triangular array) we consider the
R2-valued stationary, mean-zero Gaussian sequence

. 1 2
(X1, Xoo), with X = (X, XP) T = (0,(BY, — BP),0,(BY, — BP)) ",

and for a = (aj,a3)" the function f : R? — R, f(z,y) = a12? + azy®. Since Hermite
polynomials H,,r € N, satisty E[H,, (X](-l))HT2 (X](z))] = 0y, r,71!C12, With (covariance) con-
stant cis, i.e., zero for r; # 79, and non-zero for r; = 7o, f has Hermite rank 2 in the
sense of Eq. (2.2) in |Arcones| (1994)); see also. Neglecting the first increment in the
first component, which is asymptotically negligible, the limit theorem from |Arcones| (1994))

thus readily yields (A.4) and we conclude (A.6). A (more direct) proof based on moment
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generating functions can be worked out similar to Theorem 4 of |[Kubilius| (2020)). We have

that

- 1 T A—2H, ™ A-2H, 71

Hy=——log (=), with S = ABPY2 and T = > (Ar2B®))2.
P 2log(2) Og(S)’ with & n k:l( k ), an n k:l( k.2 )

From (A.6]), we can therefore derive a central limit theorem for ﬁp based on the multivari-
ate A-method applied to the function g : R? — R, g(z,y) = log(y/x)/(2log(2)). Since

g(02,2*r02) = H,, the A-method yields

- q T( AVAR,; AVAR
Vn(H, = Hy) %N(O’ (Vo(op 27 3)) ( AVARE AVARZ )Vg(af’ 2y )) ’

with (Vg(x,y))T = (-2~ 1y 1)T/(21og(2)), such that

AVAR AVAR
V(02,22 52 T ( 11 12 )V o2, 92 ;2
9(y )\ avar, avar,, ) V90 »)

=——  (AVAR;; — 2 -272Hp AVAR |, + 27%Hr . AVAR,, ) .
4log2(2)ag ( 11 12 22)
We conclude with (A.5a)-(A5d) for H, € (0,3/4) that

Vin(H, — Hy) % N(0,AVAR, ), (A7)

with asymptotic variance as in (@

AVAR, = (44 > (Ir+ 12 4 = 12 2\r|2HP>2
* 4log*(2) o
e 2
424 3 (|r +22He 4 | — 22He — 2|r|2H”)
r=1
e 2
—2.272 % (|r F12He 4 |r — 22He — |p2Hp _ |y — 1|2Hp) ) :
r=1

This asymptotic variance depends on H,,, but not on 0'12,. Based on the expansion

N

A2(Hy—Hyp) _ exp (2(Hp —Hyp) log(A‘l)) =1+ Z(ﬁp — Hp)log(n) + Op(n_l logQ(n)) ,
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we obtain that

log(n)* ?» P " log(n)\ m — P
\/,ﬁ A—2Hp n A @ ) A—2H, n A N2 s ,
~ log(n) ( n kzz:l (AxB™)" 0 ) +2v/n(H, — Hy) " ; (AxB™)" 4+ Op(n~"/?log*(n))

by Slutsky’s lemma and (A.7)). This proves and completes the proof of Theorem [3.1

Appendiz A.2. Proof of Theorem[3.]

For the general, bivariate fBm with asymmetry parameter 7; 2 = —n32,1, the cross-

covariances of increments generalize from (A.1) to
Cov(AxBW,A;B@) = (p1o + muasign (k — j))oroa AT T2y o (k — j) (A.8)

for (j,k) € {1,...,n}?, and with 1 5 from (A.2)). Covariances of increments of one compo-

nent are not affected by the asymmetry. This implies

E[Ar1BMAB® — A BWA BP| =E[Ar BYABP] —E[A,BYA BP]

(A.8)
3 0102AH1+H271,2(1)((P1,2 +m12)— (pr2+ 772,1))

= 21 po1 0 AT T2, o (1)

with 271 2(1) = 2f17H2 -2 With a simple bound as (p1,2+1,2 sign (k — j))2 < 2(p3 o +1m72),

the above analysis for the covariation readily yields that

Alesz n—1
=E— (AkHB(z)AkB(l)—AkHB(l)AkB@)) —1aooa (22 _0) = Op(n~1/2).

n
k=1

The asymptotics of rescaled realized variances, with increments and lag-2-increments, i.e.,

the above central limit theorems, imply that

A—QHj n—1 N2
- (Ap2BW)” —22Mig? = Op(n=1/2), j =1,2,
k=1
A—QHj n L9 3 '
—— > (ABY)" 07 = Op(n™3), =12,
k=1
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such that elementary computations yield that
M2 — N2 = O]P(nfl/z) .

Since we aim to construct an asymptotic test for 112 = 0 vs. 712 # 0, we work out the
central limit theorem for ;> under the null hypothesis that 7,2 = 0. Therefore, the
following derivation of the asymptotic variance may restrict to covariances (A.1]) instead of

(A.8), what simplifies some terms. We deduce that

A_Hl_Hz n—1
Var(\f E (Ak+1B(2) . AkB(l) _ Ak+1B(1) . AkB(2))>
n
k=1

A—Q(HH-HQ)

= Z (COV(AH_:LB@)AiB(l) - AH_lB(l)AiB@), Aj+1B(2)AjB(1) - Aj+1B(1)AjB(2))

n
1<i,j<n—1

o303 N . . o
-2 > (2(71(@—3)72(1—9)+p271,2(l+1—,7)71,2(z—9 - 1))
1<ij<n—1

— i+ 1= )96 == 1) = (i = = Dyl +1- ) — 20%1 a0 — )

= 023 (" (2 - 20 (1) - 207 (1 - 2,(1)))

#2305, (0(r) — o+ Dl — 1)~ D 1)

r=1

n—1
n—1-—7r
—4p? Y ————(1ia(r) = ma(r+ Dyaa(r — 1)) ).
r=1 n

With dominated convergence, we conclude under the null, 7; 2 = 0, the asymptotic variance

lim n - Var(f o) = (2 HH2 — 2)—2(2(1 — 1 (D)2(1)) + 202 (v12(1) — 1)

n—oo

_ [)2 Z ((|7~ + 1|H1+H2 + |7,. _ 1|H1+H2 _ 2‘T|H1+H2)2

r=1

—(Ir+ [HitH> 4 |y HitHo _ 9 4 1|H1+H2)(|T|H1+H2 +|r— 2)HatH2 _ 9y 1|H1+H2)>

+
[NCRI
NE

(2(1r + 1250+ Jr = 12 = 2y 2 (jr 4 12 4 | — 12 — 2]y |22

r=1

= (I 2P o P = 20 1P (P2 4 fr — 272 — 2 — 1)
— (Jr+ 222 + |r P2 — 2r + 1222) (|r PP + |r — 2)2H0 — 2Jr — 1\2H1))>

— AVAR,, , . (A.9)
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For the proof of Theorem we use the asymptotic variance of 7; » from and show a
central limit theorem. By self-similarity 7 it holds that (B,(:A), B,(CQA))—r 4 (AHl B,(Cl), A2 B,(f))—r.
To prove asymptotic normality of the numerator in , multiplied with A=H1=H2 /5,55,
we apply Theorem 4 from |Arcones| (1994) to prove asymptotic normality of Zz;ll f(Xk),

with the R*-valued, stationary, mean-zero Gaussian sequence (X7, ..., X, _1), with

1 2 3 A4\ T 1 1 2 2 1 1 2 2 T
X = (07X X0 = (000 (72, 0,30, 2, 57)

where the entries are already standardized with variances equal to one, and the function

FiRY SR, e, 2@, 2® @) = 50 () _ 5 40)

It suffices to show that the Hermite rank of f with respect to X; is 2 to conclude with

Theorem 4 from |Arcones| (1994)). The Hermite rank is defined by

rank(f) := inf {7’ > 1| le =7 and E[(f(X1) — E[f(X1)]) H Hlk(Xl(k))} £ 0} , (A.10)
k=1

J=1

with H;,l > 0, the Hermite polynomials. We have rank(f) > 1, since with Hy(z) = = and

Hy =1, it suffices to show
E[(f(X1) - Ef (X)) XM =0, k=1,2,3,4.
For all k = 1,2, 3,4, the proof is similar, we consider without loss of generality & = 1:

E[(f(X1) - Ef (X)) XV =E[(x{V - x{Y - x{P XY — E[f(x0)) X{V]

— E[(x{Vy x{] - E[x( . x{® . x{¥] =0,

where the last identity follows since —X; <x 1, tantamount with the (trivial) odd case in

Isserlis’ theorem. To show rank(f) = 2, consider

E[(f(X1) - E[f(X1)]) X{Vx{Y]

E[(x(? x(%)2) - E[x{" - x{? . x{ . x(") - (E[x{" - x{*))" + Bx{  x{V]E[x® . x)

7]

14 (B X)) B X PR X0 - E[x® . XPIEX® - X

=1+ p*7,(1) = p* =1 (1)r2(1).
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We make a case differentiation. If p = 0, the above yields 1 — 41 (1)y2(1) > 0. If H; = Ho,
we have that v, (1) = v2(1) = v1.2(1) = (1), what yields (1 — p?)(1 —~2(1)) > 0. For the

other case, it suffices to consider with Hy(z) = 22 — 1 the expectation

E[(£(X1) — E[f (X)) (X)) = 1)]
—E[(xM)? x® - xM . x® 4 x® . x® —(x0)2. xP . x®)]
= 3E[(x{"VIE[x{" x{V] - E[x{Vx{V]
+EXPXxP] - m[xVxPE[x N xP] - E[(x(V)?)E[x P x{V]
=2E[x{"x{V] - 2B[x{V X |E[x{V X))

= 2p(m12(1) = (1)),

what is non-zero if p # 0, and H; # Ha. The central limit theorem for 7; 2, under the null
hypothesis 71,2 = 0, is hence implied by Slutsky’s lemma. Since the map (p, H1, Hz) —
AVARj, , is continuous, what can be seen by dominated convergence, Corollary is hence
implied by the convergence of the normalized realized volatilities in the denominator, con-

tinuous mapping for convergence in probability and Slutsky’s lemma.

Appendiz A.3. Proof of Theorem[3.3

Consider the variances of suitably normalized realized covariances

A" ») j) o AT B A, B@ A BPA,B@
Var( \f ZAkBPAkBq) - Z (Cov(AkBpAkBq,AprAqu)
k=1 " 1<k,i<n

2(H,+H,)
E3 % S (Cov(AcBW, ABP)Cov(ALBW, AB)
1<k,i<n

+ Cov(AkBW, A B@)Cov(8, B, A,B7) )

(o202 — Dl = 1) + 92 0292 (k= D))

i n—r n—r
=U§0§<7p(0m(0)+2z — % (1)7a(") + £, (15,4(0 +2Z y2 ,(r) )

such that with dominated convergence, we obtain that

A—Hp—Hg n
lim Var( Tn ZAkB p)AkB(q)) = 0’ o (1 —l—ppq ) + 202 plop Z'yp )Yq (T

n— o0
k=1

+ 2'0127711‘712102 Z’Yiq(r) :
r=1
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The Hermite rank of G : R? — R, G(x,y) = x - y, defined in general in Eq. (2.2) of |Arcones
(1994) as in (A10)), is 2. This is checked using that for (X,Y)" jointly centred normal we
have E[X?2Y?] # 0, while E[X2Y] = 0. Therefore, the central limit theorem

\/ﬁ(w Z ABYAED — p,10,0,) 5 N (0,0)

n
k=1

is implied by |Arcones| (1994]), where

0202 s 2
v=0202(1+p2,) + %(p;q > (Ir+ 1ot e g |p — 1| et — gy Mot Ha)
r=1
o0
37 (14 125 4 — 1250 — 20 2He) (|r 4 1[2Ha 4 Jp — 1?Ha — 2\r|2Hq)) .
r=1
Based on similar computations, we deduce the asymptotic covariances

7H — n o0
nl;rgo (Cov(A Tn Z ALB®ALB@, A\/ﬁ Z (AkB(p))Q) = 2020(1/)(1 + 2 Zl Vp(T)’Yp,q(T))
k=1 —

between normalized realized variance and covariance, and between realized variances:

A—2H, * A 2H, ™

. 2 =
Jim COV( NG > (AB™) NG > (AxB9) ) = 2/)20;2)03(1 +2Z%§q(’")) .
k=1 k=1 =

Based on |Arcones| (1994) and Cramér-Wold, analogously as above, we obtain a multivariate

central limit theorem

A Sk (AkBW)® — o3
vn Az s (A B - o3 4 N(0,AV), (A.11)

A~ (H1+H3)

Zk 1 AkB 1)AkB 2) pPO102

with the (3 x 3) asymptotic variance-covariance matrix AV, which contains the above given

limiting variances and covariances. Since

) AT s ARBWALB®)
p prnd
\/ A S (ABM)?ATE2 S (A B®)?
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we derive from (A 11]) with the multivariate A-method. With the function h : (z,,2) "

2/ TG, Vh(3,y,2) = (= y2/(2ay)*/?), —wz/(2(wy)*/?), (wy)"/?) ", we obtain

AVAR, = (Vh((rf, 05, palag))T - AV ~Vh(0%, 0%, pO102)

2 2 AV. 2 AV, AV AV
Z%AVH—F%AV%—I— 23§+02122_P313_P 23.
407 405 0705 201035 0302 0105

Inserting the above limiting variances and covariances and simplifying the terms yields .

This finishes the proof of Theorem
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Appendix B. Online Supplement to “Modeling and Forecasting Realized Volatil-
ity with Multivariate Fractional Brownian Motion” by Markus

Bibinger, Jun Yu and Chen Zhang

Appendiz B.1. Proof of Proposition

Consider a multivariate normally distributed random vector

Y Yy X
(), e
g " S (1, X)

which is R%valued with sub-vectors Y taking values in R? and Z taking values in R?~P,
p, (d—p) € N, with marginals Y ~ N (uy, Xy ), Z ~ N(uz,¥z), where iy € RP, iy € R4P,
Yy € RP*P 5, ¢ R@-p)x(d=p) and Yyv,z € RP*(d=P)  In this case, it is well know that

the conditional distribution of Y given Z = z is multivariate normal:

Y| Z=2)~N(uy +Sy,z57" (2 — p2), Sy — Sv,25,'5y. 4). (B.1)

Having a Gaussian process, we apply this general result with d =3, p=1,to Y = Bgi)h,

with gy = 0, Sy = 02(t + h)?H1 and Z = (B, B®)T, with uz = (0,0)7, and

U%t2H1 p0102t2H
Yz =
po1 02t2H O’%t2H2

with H the cross Hurst exponent from (). The determinant
det(Xy) = o202(1 — p?)t*H
depends on (Hy, Hy) only via H. We obtain that

R N G e I G G I
zZ )

—p(o10a(1 = p2)2H) ™1 (03(1 — p?)e2H2) 7

HSee, for instance, (Eatonl [1983 Proposition 3.13).
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such that with Yy z = (c3w(t, h, Hy), poroaw(t, h, H)), we obtain

A -1
Bt+h\t = Eyﬁzzz z
Bt(l) B pBiZ)
_ 2 o2(1—p2)t2H1 o102(1—p2)t2H
= (Ulw(t,thl)mUlew(t, haH)) ’ ! (2) (1)
B, pB,
o2 (1—p2)t2H2 o102(1—p2)t2H

Computing this product proves . The MSFE equals the conditional variance:

E[(é(l) _ B(l)

2] —1yT
t+h|t t+h) } =Yy —Xyzdy EY,Z

_ o2 <(t+h)2H1 o1 . ((w(t,h,Hl))2 +p2<2w(t,h,Hl)w(t,h,H) (w(t,h,H))z)) 0

t2H1 2H t2H2

1-p

Appendiz B.2. Proof of Proposition

With similar notation as in the proof of Proposition we apply (B.1) with Y = Bt(i)h,
and Z = (Bt(l), cee Bt(d))T. The main step is to see that the (d x d) inverse of the covariance

matrix Yz has entries
(271 = (7t FHH) 1< j<d.

d
First, det(Xz) = det(X) - t2 2k=1 Hk ig verified by induction. For d = 3, this follows readily
with the rule of Sarrus. Then, a Laplace expansion, e.g., with respect to the first row, yields
the induction step. Hence, the determinant depends in general only on the sum of all Hurst

exponents. This yields for the inverse for 1 < ¢,j < d that

$oh - L i, = (GO det ((2
( Z )ij = det(Zz) a J( Z) = det(22> et (( Z)*ja*i)
= C Tt et () 500 H 105 ¢ (0 )

= (D7)t~ FHD)

where we write (Xz)_; _; for the ((d — 1) x (d — 1)) matrix obtained from Xz by deleting

the jth row and ith column, and (3)_; _; analogously. We obtain the result from

8

_ 1 d
t+h|t = EYxZEZl : (Bzg )7aBIE ))Ta

50



with ZY,Z = (Euw(t, h, Hl), RN Eldw(t7 h, (Hl + Hd)/2)) O

Appendiz B.3. Proof of Proposition [{.3

We use analogous notation as in the previous proofs. Based on similar linear algebra as

above, we can prove inductively that X! equals

1+ (d—2)p —p —p —p
—p 1+(d=2)p —p —p
1 .
—p oo 14(d—=2)p —p
—p —p —p 1+(d-2)p
Computing
’LU(t,h,H]_)

(e b By ), o, By H)J2), ol (8 + 1))yt | P D2

pw(t, h,(Hy + H)/2)

and re-using that (Egl)ij = (871Y);; ¢~ Hi+Hi) yields the result. O

Appendiz B.4. Proof of Proposition
Since for H = Hy = Ho, it holds that
O'% pPo102

E[B:B/ | =w(t,s—t H)- :
pPo102 O'%

the bivariate time-reversible fBm satisfies in this case the equality in distribution B, 4

A- (Wt(l), Wt(Q))T, where Wt(l) and Wt(Q) are two independent univariate fBms with Hurst
exponents H, and

o1 0 0% pPO102

A= with AAT =

poa /1 — p2os pPO102 o3

o1



Since the covariance function uniquely determines the distribution of a centered Gaussian
process, the equality is implied by that of the covariance functions. Let us point out that
for Hy # Ho, it is impossible to illustrate (B;) as a linear transformation of independent
fBms, unless all correlations between components of (B;) directly vanish.

The main step of the proof is now to show that for any ¢, d, z,y € R, we have that

r e B VN B N B.2
1 ¢, po102 ) c x. (B.2)
0 d Y

We use the standard notation A= for (A=) = (AT)~1. Since the inverse

1
o1 0

A7 =
_ /4 1 ’
o1y/1=p>  02y/1-p?

of the triangular matrix is easily determined, we obtain that

d 0 x
(02 ¢, poiogc) AT At =
0 d y
1 d
, R o o 0 z
= (o7 ¢, poi103¢)
0 1 _ dp d Y
oo/ 1—p2 01\/1—/)2 02\/1—;)2
d dp* _ dp
(0 ) (‘7? + Uf(l—pZ))x o (1=p2) Y
= (o1 ¢, poiozc
_ dp T+ d Yy
o102(1-p?) o3(1—p2?)
2 cdpoy cdp? cdpoy

p
- d(l ) - -
¢ +1—p2 v Ug(l—pQ)y 1—p2x+02(1—p2)y

= cdx .

Consider a forecast based on observations at two time points ¢; and ¢35, being more general
than equidistant ones. The covariance matrix 20 of (Wt(ll), Wt(lz), Wt(;), Wt(f))—'— contains due

to the independence of the components four (2 x 2)-diagonal blocks:

(t1)2H 0 w(tl,tg,H) 0
2 — 0 (tl)QH 0 w(tl,tQ,H) ,
w(tl,tQ,H) 0 (t2)2H 0
0 w(tl,t27H) 0 (t2)2H
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1 is of similar block-diagonal form. This and its explicit entries are

and its inverse 20~
determined in Lemma |1} but the explicit entries are not required to conclude. Based on the
linear transformation

(R SR Rt - R R 2 [ZERRAS TR RS PN

A
(B(l) B(Q) B(l) B(Q))T i (W(l) W(Q) W(l) Wt(ZQ))T
A

1)

the covariance matrix of (B{, B, B{") B(’))T is given by

AT 0
W
A 0 AT

Writing 20! with three (2 x 2)-diagonal blocks D, Dy and Do, the inverse covariance
matrix of (B,gll), Bt(lz)7 BY Bt(ff))—r yields

to

AT 0 D1 Do A1 0 A_TDlA_l A_TDlgA_l
0 AT Do Do 0 AL A_TDlgA_l A_TDQA_l

Computing the optimal forecast based on the conditional expectation , applies to
all four blocks in the same way, such that the forecast does not contain the other component.
The same (2 x 2)-diagonal block structure readily generalizes to arbitrarily many observation
times, such that an algebraic induction step only requires an iterated application of .

The induction hence yields the general result. O

To prove Proposition we require the following algebraic lemma on inverses of block

matrices of a specific form.

Lemma 1. A positive definite, symmetric matriz 20 € R™¥"d of the form

wl,lld ’wl,g[d N wlvnId
. w2)2[d . . o
W = , wi; € R1<4, 7 <n,
wl,nId ’wgﬁnId e wnand

where I; denotes the (d x d) identity matriz, has an inverse of the same form, i.e. there
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exist w; ; € R,1 <4,5 < n, such that

U~)171[d ’LZJLQId UN)LnId
Wo,214
W=
Wiply Wonlyg ... Wpnlg

We prove the lemma by algebraic induction. For n = 2, it is simple to verify by matrix

multiplication that

w1l wylg 1 woolyg  —wiply

2
Wi,1W2,2 — Wi o

wiolyg wa2ly —wiolg  wialy

what serves as the induction basis and yields an explicit formula for the one-period setting.
If a positive definite, symmetric 20 € R"¥*"? is of the above form, write 20 € BD(nd).
Assume as induction hypothesis that for 20,1 € BD((n — 1)d), n > 3 arbitrary, it holds

that 20, ', € BD((n — 1)d). To prepare the induction step, write for 20,, € BD(nd):

W, 1 C
an - )
CT wnand
with w,, € R, CcT = (wl,nld,...,wn_lmld) e Rax(n=1d A general block inversion

formula, see Sec. 9.3.1 in [Petersen et al| (2012), yields

_— (W1 — Cwy L L,CT) ™! —0 1 C(wn Iy — O, 0) 7

n

—(wn s —CTW L O) OT ALY (wpnly — CT; 1, C) 7

n—1

Since C and C'T consist of (d x d)-diagonal blocks in that I is multiplied with real scalars,
it follows that CT20, 1, C is a (d x d)-diagonal matrix of the same form, such that wy, ,, g —

CT ! C and its inverse are as well of this form. Since

winfd coo W pWh—1 0l
ce’ = € BD((n — 1)d),
w17nwn_17nId .. w?z—l,nld

W,—1 — w, ,CCT, and its inverse, are as well in BD((n — 1)d). C containing (d x d)-

o4



diagonal blocks in that I is multiplied with real scalars, and since 20,'; € BD((n —
1)d), Qﬂ;ﬁlC(wnand — CTQU;LC)f1 preserves this structure, such that we conclude the

induction step 20,1 € BD((n — 1)d).

Appendiz B.5. Proof of Proposition [{.3]

In the general, d-dimensional setting with a mfBm B; = (Bgl), el Bt(d))T, with all Hurst

exponents being H € (0, 1), it holds that
E[B:B ] =w(t,s—t,H) %,

with the static, positive definite variance-covariance matrix ¥ € R%*? of (Bgl), ceey B:Ed))—r.
By the spectral theorem, there is a diagonal matrix A € R¥*?  with strictly positive entries
on the diagonal, and an orthogonal matrix O € R?*? such that ¥ = OAOT and we set
»1/2 = OAY20T, where A'/2 is obtained from A taking square roots entry-wise. Similar as

in the proof of Proposition yields an illustration
B £ ¥V W,

with W, = (Wt(l)7 cee Wt(d))T being a vector of d independent fBms with equal Hurst expo-
nents H. Considering ¢ observations in a vector (B(Al), cee B(Ad), e B&), e ,Bt(i))T € R4,

this vector has the variance-covariance matrix ¢ € R¥**t of the form

AZHT, w(A2AH) ... w(AjtAH)
w(A2AH)  (2A2FI, L :
Q::BD21/2 . . . 'BD21/2,
w(AtA, H) e (tA)?HE

where I; denotes the (d x d) identity matrix and BDsy/2 the block-diagonal matrix

»i/2 0
0 X2 o...
BD21/2:
0
0 0 x/2
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The inverse €1 € R¥**_entering the conditional expectation of B&) 4ns >0, given the

t observations at times jA,1 < j < t, is with Lemma [I| hence of the form

—1 —1 —1
by C1,1 by C1,2 DY C1.¢

)

2_10172 2_102,2

-1 -1
by C1,t e DY Ctt

with real scalars ¢; j, 1 < 4,5 < t, which depend on A, H and the observation times,
but whose explicit values are not important. With algebraic induction as in the proof of

Proposition [£.4] it suffices to conclude block-wise that

T

D T S A I A AL % (B.3)
Zq

for arbitrary c,d € R, with X1, € R'*? being the first row of ¥, entering the conditional
expectation of B&)Jrh given (B(Al), R B(Ad)7 o ,B&), el Bfi))—r. (B.3)) is readily obtained,

since
El. . 271

»yt=1=

Similar as in the proof of Proposition the main ingredient is that ¢~! only contains block
matrices of the form X! -d, d € R. The equidistant observation scheme, t; = jA,1 < j <t,

is not important for this proof which generalizes to arbitrary observation times. O

Appendix B.6. HAR and Vector HAR

Appendix B.6.1. HAR model

The HAR model proposed by |Corsil (2009)) has a simple linear specification:
RViyn = Bo + B1RV + B2 RVyi—4 + B3RVyj—21 + €4, (B.4)

where RV, is the daily realized volatility and RV;_;_r = ﬁ Zf:j RV,_; with 7 < k,

and ¢ is the disturbance term. Based on this definition, RV;;_4 and RVj;_o; represent

o6



the weekly and monthly average realized volatility, respectively. The HAR model can be

estimated using the ordinary least squares (OLS) method.

Appendix B.6.2. Vector HAR model
The HAR model only handles a univariate time series. If we extend it to a multivariate
setting and incorporate information from other time series for forecasting, a natural approach

is to stack the realized volatilities and formulate a vector autoregressive model as follows

(referred to as the Vector HAR model or VHAR for short):

RViin = Po + P1RV; + 2RV 4 + P3RVy; 01 + &,

where
r; R R ; i
RV? RV? RV? 2 €2
RV, = ", RVy;_4 = =4 y RVyjp_o1 = tle-21 , C= 0 L oa=|"
RVtJ Rfo\It—4 R‘/;]It_21 B()] GZ]

J represents the number of realized volatilities and the coefficient matrices are defined as
(i=1,2,3):
b1, P12 - D1
o — P21, P22 - D27 ’

b G2 - O
Assuming that the covariance matrix of the error term, ¢;, is a diagonal matrix allows
estimation and forecasting to be performed row by row. To forecast the first element in

RV, denoted as RV}, the regression model can be expressed as follows and estimated using

OLS:

RV}, =B + 11,1 RV} + ¢11,QRVt}t_4 + ¢1173R‘/ﬁt_21
J
+y {¢1(j+1>,1RVt] + 1412 RV, + ¢1(j+1)~,3R‘/t]\t721} + e

=2
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The additional terms in the vector HAR model, compared to the standard HAR model,

J
{¢1<a’+1>,1RW + G141, 2RV, + ¢1<j+1>,3RVf\t_21}
j=2

represent information from other time series.

Appendix B.7. Parameter estimates for 20 Dow Jones 30 stocks

Table B.12 reports the point estimates of H and p for 20 Dow Jones 30 stocks in alpha-
betical order. We also report the point estimates of 7 in Table B.13 for these stocks. Table
B.12 suggests that there are differences among the estimated Hurst exponents and that the
estimated correlation parameters are always positive and far away from zero. We expect
mfBm should offer forecasting improvements over univariate fBm. Table B.13 indicates that
the asymmetry parameters are close to zero, indicating the usefulness of time-reversible

mfBm.
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Table B.12: Estimates of H and p for 20 Dow Jones 30 stocks
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Table B.13: Estimates of 11,2 for 20 Dow Jones 30 stocks
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