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This paper proposes a novel exact maximum likelihood (ML) estimation
method for general Gaussian processes, where all parameters are estimated
jointly. The exact ML estimator (MLE) is consistent and asymptotically nor-
mally distributed. We prove the local asymptotic normality (LAN) property
of the sequence of statistical experiments for general Gaussian processes
in the sense of Le Cam, thereby enabling optimal estimation and statistical
inference. The results rely solely on the asymptotic behavior of the spectral
density near zero, allowing them to be widely applied. The established op-
timality not only addresses the gap left by Adenstedt (1974) that proposed
an infeasible efficient estimator for the long-run mean p, but also enables
us to evaluate the finite-sample performance of the commonly used plug-
in MLE, in which the sample mean is substituted into the likelihood. Our
simulation results show that the plug-in MLE performs nearly as well as
the exact MLE, alleviating concerns that inefficient estimation of u would

compromise the efficiency of the remaining parameter estimates.
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1. INTRODUCTION

Gaussian processes have been widely applied across a broad range of scien-
tific and applied disciplines, including economics, finance, physics, hydrology,
and telecommunications. One of their most extensively studied features is the
long-memory property, which captures long-range dependence. The discrete-time
autoregressive fractionally integrated moving average (ARFIMA) process was in-
troduced by Granger (1980) and Hosking (1981) to model this feature. In economics
and finance, long memory has been examined in a wide array of time series, includ-
ing the real economy (Diebold and Rudebusch, 1989, 1991), stock returns (Lo, 1991,
Liu and Jing, 2018), exchange rates (Diebold et al., 1991, Cheung, 1993), and volatil-
ity (Ding et al., 1993, Andersen and Bollerslev, 1997, Andersen et al., 2003). Various
mechanisms have been proposed to explain the emergence of long memory, includ-
ing cross-sectional aggregation (Granger, 1980, Abadir and Talmain, 2002), regime
switching (Potter, 1976, Diebold and Inoue, 2001), marginalization (Chevillon et al.,
2018), and network effects (Schennach, 2018).

More recently, a rapidly growing strand of literature has focused on continuous-
time Gaussian processes, which can characterize local behavior and reproduce the
rough sample paths observed in volatility and trading volume (Gatheral et al., 2018,
Fukasawa et al., 2022, Wang et al., 2023, Bolko et al., 2023, Shi et al., 2024b, Chong
and Todorov, 2025). Two prominent models in this class are the fractional Brownian
motion (fBm)(Mandelbrot, 1965, Mandelbrot and Van Ness, 1968, Gatheral et al.,
2018) and the fractional Ornstein—Uhlenbeck (fOU) process (Cheridito et al., 2003,
Wang et al., 2023). When applied to volatility and trading volume, fractional Gaus-
sian noise (fGn, the first-order difference of fBm) and fOU exhibit anti-persistence
(or roughness) (Gatheral et al., 2018, Fukasawa and Takabatake, 2019, Shi et al.,
2024a,b, Wang et al., 2024). Several studies have begun to investigate the micro-
level origins of this roughness. For example, El Euch et al. (2018) showed that in
highly endogenous markets, rough volatility may arise from a large number of split
orders, while Jusselin and Rosenbaum (2020) demonstrated that rough volatility

emerges naturally under the no-arbitrage condition.
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OPTIMAL ESTIMATION FOR GENERAL GAUSSIAN PROCESSES 3

The ML estimation method of non-centered stationary discrete- and continuous-
time Gaussian models with long memory or anti-persistency, referred to as general
Gaussian processes, is the focus of this paper.! The consideration of non-centered
continuous-time Gaussian processes is motivated by their extensive application
in finance. Since alternative memory properties are relevant across various appli-
cations, our goal is to develop an estimation method that does not impose prior
restrictions on the memory type of the process. The choice of ML estimation is
motivated by the practical need for accurate estimation of all model parameters,
particularly when computing impulse response functions or performing forecasts.
In such cases, suboptimal estimators—such as the semi-parametric methods of
Geweke and Porter-Hudak (1983), Robinson (1995), Phillips and Shimotsu (2004),
Shimotsu (2010), the method of moments in Wang et al. (2023), and the compos-
ite likelihood approach in Bennedsen et al. (2024)—are not recommended, even
though they may offer certain advantages in other contexts. For example, Corsi
(2009) criticized semi-parametric methods for producing significantly biased and
inefficient estimates in forecasting applications with ARFIMA models. Moreover,
although the ML and Whittle ML (Whittle, 1951, Fox and Taqqu, 1986) estimators
are asymptotically equivalent, the ML estimation method generally demonstrates
superior finite-sample performance (Sowell, 1992, Cheung and Diebold, 1994).2

Considerable progress has been made in developing ML estimation methods,
extending from specific parametric models to general Gaussian processes based on
discrete-time observations.? For example, Yajima (1985) established the consistency
and asymptotic normality of the MLE for the ARFIMA(0, d,0) model withd € (0,0.5),

representing the long-memory case. These results were subsequently extended

'Hualde and Robinson (2011), Nielsen (2015), Hualde and Nielsen (2020) employ a conditional sum of
squares (CSS) method for fractional time series. It has the same asymptotic variance as the ML method.
However, the CSS method leverages the ARFIMA-specific structure, making implementations simpler
and faster. Unfortunately, it cannot be directly applied to continuous-time processes such as fOU.

2Rao and Yang (2021) propose new frequency-domain quasi-likelihoods that improve the finite-
sample behavior of the Whittle ML estimator for short-memory Gaussian processes.

3A parallel literature studies parameter estimation for continuous-time fractional models under

continuous-record observations; see Kleptsyna and Le Breton (2002).
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4

to stationary Gaussian processes with long memory by Dahlhaus (1989, 2006),
and further generalized to general Gaussian processes by Lieberman et al. (2012).
However, these existing methods adopt a two-stage procedure in which u is first
estimated by the sample mean and then substituted into the likelihood, yielding
a so-called plug-in MLE for the remaining parameters. Some implementations
apply MLE to demeaned data (Tsai and Chan, 2005, Shi and Yu, 2023), which is
essentially equivalent to the plug-in MLE procedure. Regarding the optimality of
this procedure, the sample mean is clearly not the efficient estimator for y. While
Dahlhaus (1989, 2006) argued for the efficiency of the plug-in MLE by showing
that its asymptotic covariance matrix equals the inverse of the Fisher information
matrix, they did not explicitly establish the existence of a Cramef—Rao lower bound.
Cohen et al. (2013) derived the LAN property for centered stationary Gaussian
processes with long memory or anti-persistence, providing a minimax lower bound
for general estimators. However, their results do not imply the asymptotic efficiency
of the plug-in MLE. Another concern is that the inefficiency in estimating u may
impair the finite-sample performance of the plug-in MLE. Cheung and Diebold
(1994) showed that when u is unknown, the finite-sample performance of the
MLE for the other parameters deteriorates, even though their asymptotic variances
remain the same as in the known-mean case. To date, the problem of obtaining
theoretically optimal estimators for all parameters for general Gaussian processes
within the ML framework remains unresolved. The only exception is Wang et al.
(2024) that considered MLE for all parameters jointly, including u, in the fOU
process. However, their framework is model-specific and not applicable to other
fractional models. Moreover, the minimax efficiency of the MLE was not addressed.

We introduce a novel exact ML method, a term that we adopt to distinguish
from the plug-in ML method, for general Gaussian processes, where all parameters
are estimated jointly. We establish the consistency and asymptotic normality of the
exact MLE. These results extend those in Wang et al. (2024) from fOU to general
Gaussian processes. Moreover, we establish the LAN property of the sequence of
statistical experiments in the Le Cam sense. This result extends that in Cohen et al.
(2013) from centered stationary Gaussian processes to “non-centered” ones within

the long span asymptotics, which is different from several extensions under the
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OPTIMAL ESTIMATION FOR GENERAL GAUSSIAN PROCESSES 5

high-frequency asymptotics recently made by Brouste and Fukasawa (2018), Fuka-
sawa and Takabatake (2019), Szymanski (2024), Szymanski and Takabatake (2023),
Chong and Mies (2025). The LAN property implies the efficiency of the exact MLE,
addressing the gap left by Adenstedt (1974), which proposed an efficient but infea-
sible estimator for the long-run mean . The results rely solely on the asymptotic
behavior of the spectral density near zero for a discrete record of observations,
which allows for broad applicability. * Notably, for continuous-time processes, the
convergence rate of the exact MLE of y depends on the spectral density’s aliasing
effect as well as the memory parameter, contrasting with the ARFIMA processes,
which rely only on the memory parameter.

To demonstrate the practical applicability of the proposed method, we conduct
three Monte Carlo simulation studies in which our exact ML estimator is applied
to three widely studied non-centered processes: the ARFIMA(0,d,0) model, fGn,
and fOU. Overall, our exact estimator for y outperforms the sample mean. Re-
garding the performance of the plug-in MLE, our simulation results show that
the plug-in MLE performs nearly as well as the exact MLE, alleviating concerns
that inefficient estimation of y would compromise the efficiency of the remaining
parameter estimates. In particular, for the ARFIMA(O,d,0) model, the gain in effi-
ciency for estimating p aligns with the theoretical result of Adenstedt (1974). We
also conduct a forecasting horse race for realized volatility using the fOU process
with three alternative estimators: the exact MLE, the plug-in MLE, and the change-
of-frequency (CoF) estimator by Wang et al. (2023). As expected, the exact MLE
delivers the best forecasting performance, followed by the plug-in MLE, which

performs satisfactorily, and then the CoF estimator.

4To ensure our theoretical results are broadly applicable and consistent with discrete observations,
we work with the spectral density corresponding to discrete-time data, regardless of whether the
underlying process is continuous- or discrete-time. In a subsequent paper, we demonstrate how to verify
sufficient conditions on the discrete-time spectral density provided in this paper using conditions on the
continuous-time spectral density for a wide range of continuous-time processes, such as the continuous-
time ARFIMA model (Tsai and Chan, 2005, Tsai, 2009), the fractionally integrated continuous-time
ARMA process (Brockwell and Marquardt, 2005) and Matérn Gaussian process (Matérn, 1986).
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To sum up, we contribute to the literature in the following aspects. First, we
propose a novel exact ML estimation method for all parameters in a general sta-
tionary Gaussian process, establishing its consistency and asymptotic normality,
in response to the rapidly growing literature on rough volatility and fractional
continuous-time models. Second, we prove the LAN property of the sequence of
statistical experiments for general stationary Gaussian processes in the Le Cam
sense, providing a theoretical foundation of optimal estimation and reinforcing the
discussion on efficiency. The LAN property we have established is also essential for
building asymptotic optimality of statistical tests and selecting the order of mod-
els based on the likelihood function, see Remark 5 for further references. Third,
our method serves as a benchmark for evaluating the finite-sample performance
of the existing plug-in MLE. Although the performance gap between the plug-in
MLE and the MLE with known u can be substantial in finite samples (Cheung and
Diebold, 1994), our analysis shows that this difference is not driven by inefficiencies
in estimating .

The remainder of this paper is organized as follows. Section 2 presents the exact
ML method and develops asymptotic properties. In Section 3, we provide several
examples to which our results can be applied. Section 4 presents a Monte Carlo
study to assess the performance of the estimation method. Section 5 concludes the
paper. The proof of the main results is found in the Appendix and the proof of

technical lemmas is found in the Online Appendix.

2. EXACT MLE AND ASYMPTOTIC PROPERTIES

2.1. Notation and Exact MLE

Let ¢ be a convex domain of RP~! with compact closure and set © := ¢ X (0, o).
Denote by © the set of all interior points of ©. Write 6 = (£,0)T € ® and 9 =
O, = (&, 0,u)" €®xR. Denote by d, = d/dz, d, = d/dw and d; := d/d0; for
j€{l,...,p+1}. For notational simplicity, dy, d% and 0%, denote the identify operator.

The derivative operators 8’?1 ;, are recursively defined by 9" =dj 0 o1 . for

Jirerfic J2reerJik
j1,---,Jk €10,1,...,p+ 1} and k € IN. Moreover, 1, denotes a n-dimensional vector

yeeer

whose all elements are equal to 1 and, for an integrable function f on [-m7, 7],
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OPTIMAL ESTIMATION FOR GENERAL GAUSSIAN PROCESSES 7

Lu(f) denotes the symmetric Toeplitz matrix whose (i, j)th elements are equal to
the (i — j)th Fourier coefficients of f.

Let us consider a stationary Gaussian time series {X}?}jez with mean p and
spectral density function sX(w,0). We may write sg(a)) .= sX(w, 0). Let us denote
by 99 = (£0,00,t0)" an interior point of ® X R, which may call a true value of
the parameter 9, and we assume that we observe a realization of X‘fo,...,X,‘jO.
Let s?(w) = sg(a))/Gz. Then, for each 9 = (0,u)" € ®XR and n € N, we denote by
ng a distribution on the Borel space (R", B(IR")) under which a random vector

Xy = (X3,...,X,)" follows a n-dimensional Gaussian vector with mean vector ul,
and variance-covariance matrix Zn(sX ). We also denote by y; X(.) the auto-covariance

function of X?°.
Denote by €,(3) = £,(&, 0, u) the Gaussian log-likelihood function of the observa-
tions X;; under the distribution IPg, which is given by

1 1 T _
0a(9) = —g log(27) - g loga® -3 logdet| Z,(s)] - 5 (X = pa1) Ea(sX) (X — i), )
and then the maximum likelihood estimator (MLE)?® is defined by

§MLE (EMLE —MLE ’MLE)

st argmax  {u(9).

(&,0,u)T€BX(0,00) xR

Notice that, from the definition of MLE, MLE satisfies the estimation equations:
duln(9) =0 and Jdsly(9) =0

which imply that the equations

111— Ly (Sg()_lxn

1
L0, tn(é) and 0% = — (X = pln) " Zn(sy) ™ Xu = pln) =2 03(E, 1)

‘Ll =
hold for any (&,0,u)" € ©; X (0,00) x R. Then MLE E%LE is a maximizer of the
function (&) := £,4(&,5n(E), (&), where 52(&) := 02(&, un(&)) and 5,(E) := 4/52(E),

SWe have derived an alternative expression of the likelihood function using the conditional likeli-
hood based on the Bayes formula, which improves the computational efficiency by avoiding direct

computations of the inverse and determinant of a large-scale covariance matrix. See B.9 for details.
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8

“MLE and ?.?I’;/[LE

over the parameter £ € ®s and MLEs 1}, satisfy the equations

TMLE _ #n(a;/ILE) and GMLE = 571(3\1/&}3) _ \/G%(glr\l/[LE’/’jh/ILE)_
Therefore, we define our proposed estimator 9, = (é\n,?fn,ﬁn)-r by

&n € arg maxZy(8), Gy = 6n(En), and Ty = ta(En), (2)
ée@g
and we call 9, = (a,,En,ﬁn)T the exact MLE throughout this paper. In subsequent

sections, we investigate the asymptotic properties of the exact MLE.

2.2. Consistency and Asymptotic Normality of Exact MLE

We first introduce several conditions on the spectral density function sg (w) sum-
marized in the following assumption that is used to obtain asymptotic properties of

the exact MLE and the likelihood ratio process; see Sections 2.2 and 2.3 for details.

AssumpTioN 1: (1) For each 0 € ©, sg(a)) is a non-negative integrable even function
in w on [, ] with 2m-periodicity. Moreover, it satisfies
e foreach w € [-m, ]\{0}, sg (w) is three times continuously differentiable in O on
the interior of ©,
o foreach 0 €®and je(l,...,p}, sg(m) and o'?]-sg(w) are continuously differen-
tiable in w on [—m, 7]\ {O}.

(2) If 61 and O, are distinct elements of ©, the set {w € [-m, 7] : 5}9(1 (w) # sgz(a))} has a
positive Lebesgue measure.

(8) There exists a continuous function ax : g — (—oo,1) such that for any 1 > 0 and
some constants ¢y ,,¢a,,,¢3, > 0, which only depends on t, the following conditions hold
for every (0,w) € ® X [—mt, ]\{0}:

(a) 1wl <X (w) < e, o] 72X O,

(b) Forany jy,j2,j3€1{0,1,...,p},

‘8?1/]'2/]'35}9((0))| < C3"|w|_aX(£)_L and |c9w8]‘15}9((a))| < C3,L|CU|_QX(5)_1_L.

Assumption 1 is the usual conditions on the “discrete-time” spectral density

function for stationary Gaussian time series with long/short/anti-persistent mem-
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OPTIMAL ESTIMATION FOR GENERAL GAUSSIAN PROCESSES 9

ory used in the literature; see the assumptions in Fox and Taqqu (1986), Dahlhaus
(1989, 2006), Lieberman et al. (2012), Cohen et al. (2013) and Fukasawa and Taka-
batake (2019) as references. The time series {X}?} jez is said to have long memory
(or long-range dependence) if 0 < ax(&) <1, short memory if ax(&) =0, and anti-
persistence if ax(&) < 0. The range ax(&) < —1 corresponds to noninvertibility, and
our results cover this case as well. Since these memory properties are relevant
across various applications, we do not impose prior restrictions on the memory
type of the process.

Before stating our main results, we introduce additional notations. We write

0, = (é\n,?;‘n)T and 9, = (gn,ﬁn)T. Define p X p dimensional matrix 7,(0) by

.....

[ Fp-1(&) a,-1(6)
( f d;log s (w)d; logse(a))da))l,j:1 . = (ap—l(Q)T 252 ] (3)

where
a,-1(0) := —f de logsx(w)da} Fp-1(&) = ( 17_(f d; logs (w)d; logs; (a))da)) .
Then we assume the following condition on ¥,(0).

AssumrTION 2: The matrix ¥,(0) is invertible for each 6 € ©.

Our first main result is a weak consistency and an asymptotic normality of the
sequence of the exact MLEs {gn}neN defined in (2), that is a generalization of, for
example, Theorems 3.1 and 3.2 in Dahlhaus (1989) and Theorem 1 in Lieberman
etal. (2012) to the case of general Gaussian processes using the multi-step estimation

procedure based on the exact MLE defined in (2).

Tueorem 1: Under Assumptions 1 and 2, the sequence of the exact MLEs {5,1}”6]1\1 is
consistent and asymptotically normal. That is, for each 9 = (0,u)T € OX R,

V(6= 6) = Np(0p, Fp(6) ™) as n — oo

in law under the distribution Py, where ¥,(0) is the non-singular matrix defined in (3).
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10

To prove the asymptotic normality of MLEs for joint estimation 9 = (6,u)" as
well as MLE for p1, we need to further assume the precise asymptotic behavior of

the spectral density function sg (w) around the frequency w = 0 given below.

AssumpTION 3: In addition to Assumption 1, we further assume that there exists a

continuous function cx : ©g — (0,00) such that for each (£,0)T € O,
55(@) ~ a*ex(E)lwl ™) as jw| — 0.
Based on the matrix ¥,(0) defined in (3), we further define

1
n-2l 0 F,(0) 0
- P P N P
) ._( o7 n-%(l_ax(é))] nd 2 ._( o7 2T0-ax@cfex® [ 4
: P B-ax@21-ax(&/D

where B(a, p) is the beta-function. Note that, under Assumption 2, the matrix 7(9)
is also invertible for each 9 € ® X R. Moreover, we introduce a normalized score

tunction C,(9) and an observed Fisher information matrix () defined by
Cn(9) := Dp(9) s lu(9) and Ty(8) := —Dy(9) T A3 Lu(9) Dy (9). (5)

Now we can state our second main result of the asymptotic normality of the MLE

for the joint parameter 9 = (0, 11) T, summarized in the following theorem.

Tueorem 2: Under Assumptions 2 and 3, the sequence of the exact MLEs {gn}neN
satisfies the following asymptotic normality: for each 9 € @ X R, we have

D, (9) 7 (31— 8) = Tu(9) ™ Mgz, (5)150Cn(8) +0pr(1) = Nps1 (0541, 7)) (6)
in law under the distribution IP'y as n — co, where Cy(9) and 1 ,(9) are defined in (5).

ReEMARK 1: In the literature, the treatment of the long-run mean u in general Gaussian
processes remains unsatisfactory. A common approach is to assume that p is known and
set to zero (Sowell, 1992, Hualde and Robinson, 2011, Nielsen, 2015). Another approach
is to use the sample mean as a consistent estimator and then optimize the plug-in objective
function (Fox and Tagqu, 1986, Dahlhaus, 1989, 2006, Lieberman et al., 2012). Only a few
exceptions exist; for example, Hualde and Nielsen (2020) considered the CSS estimator of
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OPTIMAL ESTIMATION FOR GENERAL GAUSSIAN PROCESSES 11

for discrete-time models, while Wang et al. (2024) developed the exact MLE for all parame-
ters in fOU. However, their methods are model-specific. Bennedsen et al. (2024) addressed
unknown u in continuous-time Gaussian processes within the maximum composite like-
lihood framework. In contrast, our theorem applies to both discrete- and continuous-time

Gaussian processes, and provides rigorous discussions on efficiency.

REMARK 2: For ARFIMA processes, ax(€) is a function of d (i.e. ax(&) = 2d). For fGn,
we have ax(&) = 2H — 1 where Hurst parameter H € (0,1). However, for continuous-time
models such as fOU, we have a) ax(&) =0 when H € (0,1/2] and b) ax(E) = 2H —1 when
H € (1/2,1). This difference arises from the aliasing formula of the spectral density, which
renders the spectral density bounded away from zero when H € (0,1/2]. See Section 3 and
Shi et al. (2024b) for more details. Therefore, for fOU, the exact MILE of u converges at the
\/n rate when H € (0,1/2], which differs from ARFIMA and fGn.

RemARk 3: The asymptotic normality properties in Theorems 1 and 2 show that the
sequences of the plug-in MLEs of O with nuisance parameter u and the exact MLEs
of 9 =(6,u)" are respectively asymptotically efficient in the Fisher sense, in that their
limiting covariance matrices equal the inverse of the Fisher information matrices, given
by the limits of the sequences of the matrices —n‘1(9%€n((8, po) ") and I,(9) defined in
(5). These Fisher efficiencies have also been discussed in Dahlhaus (1989), Lieberman et al.
(2012) for the plug-in MLE. However, these works do not establish the minimax optimality
proved later in Corollary 5.

One might wonder whether the minimax optimality can be deduced by passing to the limit
from Cramér—Rao inequality formulated for possibly biased estimators. Unfortunately, this
is not the case. Such finite-sample inequalities control pointwise variances but do not rule
out the existence of superefficient points. A classical example is Hodges’s estimator in the
i.i.d. Gaussian location model, which is \/n-consistent and has the same asymptotic variance
as the MLE except at a single point where it is superefficient. This example illustrates
that Cramér—Rao—type arguments alone are insufficient to rule out superefficient points,
indicating that the existence of general lower bounds for estimators cannot be derived solely
from such inequalities.

Le Cam (1953) showed that the set of superefficient points has Lebesgue measure zero,

with subsequent extensions by Bahadur (1964) and Pfanzagl (1970). These results, how-
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ever, rely on parametric i.i.d. models or other reqularity assumptions. To the best of our
knowledge, extensions of these results to statistical experiments induced by general Gaus-
sian processes have not been established. Therefore, one cannot rely on Fisher efficiency or
Cramér—Rao—type inequalities alone to establish minimax optimality in local neighborhoods
of the true parameter. To overcome this limitation, one needs the LAN property together
with Hdjek—-Le Cam’s local asymptotic minimax theorem (Hdjek, 1972, Le Cam, 1972),
which ensures that no estimator can asymptotically achieve a smaller risk than the bound
determined by the Fisher information in shrinking neighborhoods of the true parameter.
This motivates the next subsection, where we establish the LAN property for statistical
experiments induced by general Gaussian processes and then derive the minimax efficiency
of the exact MLE as well as the plug-in MLE.

2.3. Local Asymptotic Normality and Asymptotic Efficiency of the Exact MLE

The concept of LAN is a cornerstone of modern asymptotic statistics. It was
formally introduced by Le Cam (1960), based on previous contributions by Wald
(1943) and the asymptotic theory of estimation developed by Le Cam (1953). The
LAN property plays a central role not only in proving the asymptotic optimality
of estimators but also in providing a general framework for statistical inference.
In this subsection, we establish the LAN property for the sequence of statistical
experiments {(]R”,B(]R”),{Pg}SE@xR)}neN induced by general Gaussian processes.
Building on this result, we then derive the local asymptotic minimax efficiency of

the exact MLE. Further applications of the LAN property will also be discussed.

Tueorem 3: Consider the sequence of rate matrices {0y (9)},eN defined in (3). Under
Assumptions 2 and 3, the family of distributions {IP§}seoxr satisfies the following LAN
property at each 9 € © X R:

dﬂjg+q)n(3)u

log
dIPy

= 0][1767(1) asn — oo,

- (uTCn(S) - %uTI(S)u)

where the invertible matrix 1(9) is defined in (4) and the normalized score function
Cn(9) = @, (8) T, () satisfies the convergence

Cn(8) = N(0,1(9)) asn — oo
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OPTIMAL ESTIMATION FOR GENERAL GAUSSIAN PROCESSES 13

in law under the distribution ]Pg.

ReMARK 4: Theorem 2.4 in Cohen et al. (2013) established the LAN property for centered
stationary Gaussian time series with long-, short-, or anti-persistent memory under As-
sumptions 1 and 2. Theorem 3 extends this result to general Gaussian processes under the
long-span asymptotics, in contrast to several recent works on high-frequency asymptotics
(Brouste and Fukasawa, 2018, Fukasawa and Takabatake, 2019, Szymanski and Takabatake,
2023, Szymanski, 2024, Chong and Mies, 2025). For the centered case, the LAN property
shown in Cohen et al. (2013) allows one to deduce a local asymptotic minimax lower bound
through the Hdjek—Le Cam local asymptotic minimax theorem (Hdjek, 1972, Le Cam,
1972). However, their result applies only to centered Gaussian processes, and the extension
to models with an unknown mean is not straightforward. As a consequence, it cannot be
used to establish the minimax efficiency of either the exact MILE or the plug-in MLLE in the

non-centered setting.

The LAN property provides local asymptotic minimax lower bounds for the
risk of estimators of 9 = (0,u)". In particular, the Hajek-Le Cam local asymptotic
minimax theorem (see Hdjek (1972), Ibragimov and Has'minskii (1981), Le Cam

(1972)) formalizes this bound, which we recall below.

TueoREM 4—Theorem I1.12.1 in Ibragimov and Has'minskii (1981): Let © C R4
be a parameter set, and let Oy be an interior point of ©. Suppose that the family of
distributions {Pgloee satisfies the LAN property at 6y with a sequence of invertible d X d-
matrices {®,(0p)}neN and a d X d-positive definite matrix 1(0o). Then, for any sequence of
estimators {Op)nen and any symmetric nonnegative quasi-convex function L on R? such
that e_€||z||§zdL(z) — 0 as ||zl|gra — oo for any € > 0, we have

|2

lim lim sup Ej [L(©4(00) 7 (@n - 0))] = (2)% f ) L(I(eo)—%z)exp(_T)dz,
R

€00 100 9@ |y (09) 1 (0-60)||ga <c

—_

Notice that we have already proved that the sequence of the exact MLEs {9, },eNn
defined in (2) satisfies the coupling property (6) in Theorem 2 so that, using the re-
sult in Section 7.12.(b) of Hopfner (2014) in addition to Theorem 3, we can conclude
that the sequence of exact MLEs is asymptotically efficient in the local asymp-

totic minimax sense as well as in the Fisher sense, and then it attains the local
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asymptotic minimax bound of estimation given in Theorem 4. We summarize the

aforementioned result in the following corollary.

CoroLLARY 5—Asymptotic Minimax Optimality: Consider the sequence of rate ma-
trices {®,,(9)}neN defined in (3) and the matrix 1(9) defined in (4). Under Assumptions 2

and 3, the sequence of the exact MILEs {3, },cN defined in (2) attains the local asymptotic

minimax bound given in Theorem 4 at each 99 € @ X R. Namely, for any symmetric non-

||zl

negative quasi-convex function L on RP* such that e R L(z) — 0 as ||z||gp+1 — oo for

any € >0, we obtain

. . 15 -l -1 j2*
lim sup B3 [L(@,00 G- 9)] =@ T [ (150 Ez)exp|-5- ) d
"7 SE@XR |1 (89) T (9-0) |1 < RP+1 2

for any 99 € © x R and any constant c € (0,0).

Remark 5: Corollary 5 highlights the role of the LAN property in establishing the
minimax efficiency of the exact MLE. The relevance of LAN property, however, goes well
beyond estimation. It provides a general framework for asymptotic inference. For example,
it underlies the asymptotically uniformly most powerful unbiased (AUMPU) property of
likelihood ratio tests (Choi et al., 1996) and supports consistency results for model selection
criteria such as the (quasi) Bayesian information criterion (BIC) (Equchi and Masuda,
2018). These potential applications illustrate the broader scope of the LAN property, whose

detailed exploration is deferred to future research.

2.4. Comparison between Exact MLE and Plug-in MLE

As an alternative estimator of 0, the plug-in MLE (PMLE) is defined by

OPMLE ¢ arg max £,((0, 1) ") 7)

0€0O.
using some compact set ®, C ® and a plug-in estimator (1,,. Under similar assump-
tions to Assumption 1, Dahlhaus (1989, 2006) and Lieberman et al. (2012) show
that the plug-in MLE is consistent and asymptotically normal with the asymptotic
variance-covariance matrix ,(6p) ! under the distribution ]P";O, when the plug-in

estimator 1, satisfies

Fin = p+ opy (1 307E0) a1 oo, ®
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OPTIMAL ESTIMATION FOR GENERAL GAUSSIAN PROCESSES 15

The condition given in (8), verified under Assumption 3, corresponds to the
assumption on the estimator of y in Theorem 3.2 of Dahlhaus (1989) for the long
memory case ax(&po) € (0,1), and to Assumption 5 of Lieberman et al. (2012) for the
long/short/anti-persistent memory case ax(&p) € (—o0,1). The plug-in MLE shares
the same convergence rate and asymptotic variance as our exact MLE of 0, implying
that it is also asymptotically efficient.

Moreover, Theorem 3 combined with Theorem 4 yields the asymptotic minimax

lower bound

2nagex(E0)T(1 - ax(&o))
1-ax(&0)/2,1-ax(&0)/2)

lim sup B[O - w7 = 9)

=00y, (89) (8 —8)ll p+1 <c
for any ¢ > 0 and any sequence of estimators {(,},en. This shows that the conver-
gence rate in (8) coincides with the minimax optimal rate given in (9).

It is known that the best linear unbiased estimator (BLUE) of u, denoted ZL\ELUE,
satisfies (8) for all ax(&p) € (—o0,1) (Adenstedt, 1974). However, ZIELUE is infeasible
since it depends on the unknown true value &p. Samarov and Taqqu (1988) proved
that the widely used sample mean satisfies (8) when ax(&p) € (—1,1), but it fails to
attain the minimax optimal rate when ax(&p) € (—o0,—1], and even within (-1, 1) its
asymptotic variance does not achieve the minimax lower bound.

The asymptotic inefficiency of the sample mean in fractional time series has been
explicitly quantified. Adenstedt (1974) established the result for ARFIMA(O0,4,0),
while Samarov and Taqqu (1988) extended it to general stationary Gaussian time
series, including ARFIMA(p,d,q), f{Gn, and fOU. Their results are based on the

asymptotic relative efficiency between u5“UE and the sample mean X,,, defined as

Varg[BLVE]

e(n,d) := —
Varg[X;]
Specifically, they showed that if ax(&) € (=1,1) and d := ax(£)/2, then under mild
technical conditions verified by Assumption 3,
: B —1td(1 + 2d) _ (2d+1)I(d+1)I'(2-2d)
im0 9) = B D ein(erd) T(1—d) '

(10)

This limiting efficiency is always strictly less than 1, except in the trivial case d = 0.
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3. EXAMPLES

Our assumptions on the spectral density are very general and the results
can be applied to many well-known processes, including but not limited to the
ARFIMA(p,d,q) process with |d| < 1/2, f{Gn with an unknown mean and fOU.

3.1. Non-Centered Gaussian ARFIMA(p,d,q) Process

The non-centered ARFIMA(p,d,q) process was introduce by Granger (1980)
and Hosking (1981) independently. For notational simplicity, we start with the
ARFIMA(0,d,0) model. The non-centered ARFIMA(0,d,0) model is specified as

X;—u=0(1-L) " with [d| <1/2, (11)

where L is the lag operator, (1 - L) is the fractional difference operator with
the memory parameter d and ¢; i N(0,1). It reduces to a Gaussian white noise
when d = 0. When d € (-1/2,1/2), ARFIMA(0,d,0) is stationary and invertible
(Bloomfield, 1985). Let u; := (1 - L)_dej be the fractionally integrated process and
vu(k) := Covluj, uj, ] be its kth-order auto-covariance. According to Hosking (1981),

the auto-covariance function of u = {u} ez is expressed by

(1T ~24d) ke (12)

yul) = S a DI —k=a)’ '

Thelong-run variance covariance ) ;> yu(k) =cowhend € (0,1/2)and ¥}, yu(k)
0 when d € (-1/2,0). Therefore, {u}jcz has a long memory if d € (0,1/2) and is anti-
persistent if d € (=1/2,0). The spectral density of the model is given by

2

2
X o —iw-2d O
so(w)=—I|1-e ~—

2
The non-centered ARFIMA(p,d,q) process is defined by

lw|™ as |w| — 0.

Ge(L)Xj—w) =ope(L)uj, jeZ, (13)

where p,g e NU{0}, &:=(P1,...,Pp, P1,..., Pg) ERPT, Pe(z) :=1—P1z—++-—Ppz’ and
Ye(z) := 1+ 1z +--- + P4z, Assume that for each &, the functions ¢¢(z) and g(z)

have no common roots in C, and that all their roots lie outside the unit circle. This
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OPTIMAL ESTIMATION FOR GENERAL GAUSSIAN PROCESSES 17
implies that ¢s(z) # 0 and Y¢(z) # 0 for |z| < 1. Then, for |d| < 1/2, the difference
equation in (13) admits a unique stationary solution X = {X;} iz of the form

Xj=p+ops(L) (LA -L) e, jeZ

The spectral density function of ARFIMA(p,d,q) is given by
o2 [pee™)P
e (e )

Since the assumption ¢¢(z) # 0 for |z| < 1 ensures that the spectral density function
of ARMA(p,q),

52
sg(w)= Ell—e w € (-, 7.

o? Ipe(e™™)
27 | (7 )P

is bounded away from zero on [, 7t], the singularity of the spectral density of X in
—iw |—2d )

farma(w) =

the vicinity of zero frequency is governed by the ARFIMA(0, d, 0) factor [1—e

As w — 0, it exhibits the asymptotic behavior
5(@) ~ o ex(&)lw| =),
2
For the non-centered ARFIMA(p,d,q) process, ax(&) = 2d,cx(&) = (2m)~! i‘;gg

Assumptions 1 and 3. Hence, our results are applicable to the non-centered Gaus-

in

sian ARFIMA(p,d, q) process. According to Theorem 2, when d < 0, the convergence
rate for the exact MLE of y is %(1 —ax(&)) > 1/2, indicating superconsistency.

3.2. Non-Centered Fractional Gaussian Noise

The fBm with Hurstindex H € (0,1), denoted by BH = {BE }ter, 18 @ unique centered
Gaussian process that is almost surely equal to zero at t = 0 and possesses both
stationary increments and H-self-similarity properties. Specifically, these properties

are expressed as
H pH 4 pH H H 4 HpH
BH -BH 2Bl Bl and B = B!

for any s,t € R and ¢ > 0, where £ denotes equality in distribution. Mandelbrot

and Van Ness (1968) demonstrated that fBm can be represented as a causal moving
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average process involving the past differential increments of a (two-sided) standard

Brownian motion B = {B;};cRr. This representation is given by

H _ 1 0 H-0.5 H-O0. : H-0.5

where T'(x) denotes the gamma function,® which implies that fBm reduces to the
standard Brownian motion when H = 0.5.
The sequence of increments of fBm is the (standard) f{Gn, denoted by {€;};cz. The

fGn with mean p and variance o is defined through

X :=[.1+G€]'=[.1+G(B§_I—B§_I

), JEZ.
From the definition of fBm, its covariance function is given by
1
Cov[B{',B{'] = 5 [P 1525 — 1t = sP7], Vt,s€R,

which yields the expression of the auto-covariance function of X = {X;};cz by

2
YR (k) := CovIXj, Xj4k] = % [|k+ 12H —2)kPH + k- 1|2H], kez, 0=(Ho)".
Notice that the Taylor expansion yields the following asymptotic expression:
ya(k) ~ c*H(2H - 1)kH72 as || — co. (14)

The spectral density function of fGn is given by Sinai (1976):

sX(w) = 0?Crl2(1 - cos(w))) Z 27tk + w7 for w € [-m, 7], (15)

k=—00

where Cp := (2n) "' T(2H + 1) sin(rtH). It can be shown that
sy (w) ~ 0*Cplw|'™", when w — 0.

For the non-centered fGn, ax(&) and cx(&) in Assumptions 1 and 3 are ax (&) =2H -1

and cx(&) = Cy. Hence, our results are applicable to the non-centered fractional

®This is also referred to as the Type I fBm.

-
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Gaussian noise. According to Theorem 2, when H < 0.5, the convergence rate for
the exact MLE of u is %(1 —ax(&)) > 1/2, implying superconsistency. This result
echoes that for ARFIMA.

3.3. Fractional Ornstein-Uhlenbeck Process

The fOU is an extension of the classical Ornstein-Uhlenbeck (OU) process, where
the driving noise is replaced by fBm with Hurst index H € (0,1). This process is
particularly useful for modeling systems that exhibit long-range dependence and
local self-similarity, which cannot be captured by the classical OU process. The
stationary fOU process with a long-run mean p has applications in various fields,
including mathematical finance, physics, and time series modeling.

The fOU process Y = {Yi}icr is defined by a unique solution of the following
linear SDE (Stochastic Differential Equation):

dY;=—x(Y;—u)dt+odBH, t>0, (16)

with initial condition Yy, where B = {Bf Yer 1s an fBm with Hurst index H. The

explicit solution of this SDE is given by
t
Yi=Yoe M+ u(l—e ) +0 f e =) 4BH, >0, (17)
0

where the above stochastic integral can be interpreted as the pathwise Riemann-
Stieltjes integral or the Wiener integral associated with fBm for any H € (0,1).

The fOU process reduces to the classical OU process when H = 0.5 and to fBm
when x = 0. When « > 0, the stationary solution of the SDE (16), denoted by Y =
{Yi}er, is given by

t
Yii=u +of e =) 4BH, teR. (18)

0]

For t > 0, the unique solution of the SDE (16) with the initial condition

0
Y0=y+af e dBH!

(0]
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is exactly equal to the stationary solution Y in (18), and then the error between Y;

and Y; with arbitrary initial condition Y| is expressed by
Yi=Yil = Yo~ Yole™, 20,

which implies that the error between the solutions (17) and (18) converges to
zero exponentially as t — oo for arbitrary initial condition Y. In the rest of this
section, we consider the case where a data-generating process is the discretely and
equidistantly observed time series from the stationary solution given in (18).
Consider a stationary time series X = {Xj}jcz of the form X;:= Y, for je Z
with the sampling frequency A. Write & = (H,x)" and 6 = (£,0)". Notice that the
time series X is stationary and the following expression of its auto-covariance is

available from Garnier and Selna (2018) when x > 0:

2K2H 2

(0]

2 00
ya(k) = ° (1 f e BllkA + s ds — [kkAPH ), ke z. (19)

Cheridito et al. (2003) and Hult (2003) provide the spectral density function of the

stationary solution Y given by
sg (z) = 0*Crilz| 2 (k2 + 2%) 7! for z € (—00, ). (20)

Due to the aliasing formula of the spectral density function (e.g. see Priestley (1988)),

the spectral density function of the discrete-time process X = {X} ez is given by

1 o[+ 21k - |ow + 271k|
X Y 2 2H
s(w):—Es( ):aCA E

0 ASO\ A " (kAY? + (e + 271k)?

1-2H

(21)

k=—00

for w € [—m, 7], see also Hult (2003). As |w| | 0, Shi et al. (2024b) has shown that

2 2H y oo 2k ~2H 1
sg(a)) o CHA™ Yl TNDE when0<H < 3, )
2CH A2 2| 1-2H, when 1 < H<1.

Hence, in Assumptions 1 and 3 for the fOU process, we have a) ax(£) =0 and
cx(&) = S‘g(O)/a2 when H € (0,1/2] and b) ax(&) =2H -1 and cx(&) = CyA?H2x2
when H € (1/2,1). Hence, our results are applicable to the fOU process. However,
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the function ax(&) exhibits a sharp contrast compared to that of the ARFIMA and
fGn. According to Theorem 2, the convergence rate for the exact MLE of p in fOU
is vn when H < 1/2, as recently reported in (Wang et al., 2024).

4. MONTE CARLO STUDY

We consider three data-generating processes (DGPs): ARFIMA(0,4,0), fGn and
tOU. For simplicity, the long-run mean p is set to 0 and the scale parameter o is set
to 1. The results for p+1 are provided in Appendix B.11. The parameter d in the
ARFIMA(0,d,0) model takes 9 values: {-0.4,-0.3,...,0,...,0.4}, while the parameter
H in fGn and fOU takes 9 values: H = 0.1,0.2,...,0.9. The fOU has an additional
parameter x = 10. For each DGP, we compare our exact MLE with the two MLEs
considered in Cheung and Diebold (1994). MLEL1 refers to the case where u is
known, MLE2 refers to our exact MLE, and MLE3 refers to the plug-in MLE, where
the sample mean is used as an estimator for u. The number of replications is set to
1000. The sample size is set to 250 or 1000. Reported are the bias, standard error
(Std), and root mean squared error (RMSE) across all replications for each method.

Table I reports the results for ARFIMA and Table II for fGn. From Tables I-1I, we
have the following findings. First, in terms of convergence rates, the performance
of MLE2 aligns well with our asymptotic theory. For u, the convergence rate is
n~1=ax(@)/2 which becomes slower as d increases toward 1/2 from —1/2 (or as H
increases toward 1 from 0). A similar pattern can be observed for the sample mean,
as it shares the same convergence rate as given in (8) and (9). For the remaining pa-
rameters, the convergence rate remains at n!/2. Second, MLE2 of i1 always performs
better than MLE3 of u, except when d = 0 in ARFIMA or H = 1/2 in fGn, where
the two methods perform nearly identically. Third, interestingly, this superior per-
formance in estimating u by MLE2 does not translate into better performance in
estimating other parameters. Using the true value of u, MLE1 does not lead to
better performance in estimating other parameters. The three ML methods lead to

a similar finite sample performance for parameters other than p.
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Asymptotic efficiency of the sample mean
T T

Ficure 1.—Relative inefficiency of the sample mean over the exact MLE as a function of d for
ARFIMA(0,d,0) and fGn when n = 1000. For fGn, d = H-1/2.

To see how the relative inefficiency of the sample mean over MLE2 of y, the two
dashed lines in Figure 1 plot the ratio of the sample variance of MLE2 for u to that
of MLE3 as a function of d for the two models when n = 1000 in ARFIMA and fGn.
Clearly, the relative inefficiency goes up rapidly as d is closer to —0.5 in ARFIMA
and fGn. For comparison, also plotted by the solid line is the theoretical asymptotic
inefficiency given in (10). The red dashed line is closely aligned with the theory.

Tables III-IV report the results for fOU, from which we observe the following
findings. First, in terms of convergence rates, the performance of MLE2 aligns well
with our asymptotic theory. For y, the convergence rate is n'/? when H < 1/2,
and transitions to n'™H when H > 1/2. The standard deviation of the estimator
for u decreases substantially as the sample size increases from 250 to 1000 when
H <1/2; however, as H approaches 1, the percentage reduction becomes markedly
smaller. A similar pattern can be observed for the sample mean, as it shares the
same convergence rate as given in (8) and (9). For the remaining parameters, the

172 Second, we see a clear dominance of MLE2 over

convergence rate remains at n
MLE3 in terms of finite sample performance of estimates of 11, when both 7 is large
and H is near either zero or one. Third, this superior performance in estimating p by
MLE2 does not translate into a better performance in estimating other parameters.

Using the true value of y, MLE1 does not lead to better performance in estimating
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the other 3 parameters. The three ML methods lead to a similar finite sample
performance for parameters other than u.”

To see how the relative inefficiency of the sample mean over MLE2 of u, Figure 2
plots the ratio of the sample variance of MLE2 for u to that of MLE3 as a function of
H for fOU when 1 = 1000.2 When H is close to 0.5, the asymptotic efficiency of the
sample mean is near 1. However, as H approaches 0 or 1, the relative inefficiency

of the sample mean increases rapidly.

Asymptotic efficiency of the sample mean
T T T

Ficure 2.—Relative inefficiency of the sample mean over the exact MLE as a function of H for fOU
when 7 = 1000.

7In the online supplement (Section B.10), we conduct a forecasting horse race for realized volatility us-
ing the fOU process with three alternative estimators: MLE2, MLE3, and the CoF estimator. As expected,
MLE2 delivers the best forecasting performance, followed by MLE3 and then the CoF estimator.

8When the sample size goes up, our unreported simulation results show that the relative inefficiency

goes down as predicted by our theory.
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Bias AND StD oF ALTERNATIVE MLEs ror ARFIMA(0,4,0): y =0 axp o =1.
MLE?2 1s our Exact MLE; MLE3 1s PMLE.

TABLE I

MLELI 1s MLE WITH KNOWN [i;

| MLEl MLE2 MLE3 | MLEl MLE2 MLE3 | MLEl MLE2 MLE3
n=250
\ d=-040 d=-030 \ d=-020
g Bias| - -0.0004 -00003| -  -0.0005 -0.0010| - 0.0010  0.0012
Std ; 0.0096 00113 - 00151 00162 ; 0.0244 00248
4 Bias | 00029 -0.0140 -0.0074 | -0.0029 -0.0157 -0.0121 | -0.0056 -0.0194 -0.0179
Std | 00507 00510 00500 | 0.0518 0.0553 00542 | 0.0509 0.053 0.0529
o Bias | 0.0001 -0.0022 -0.0012 | -0.0019 -0.0042 -0.0038 | -0.0025 -0.0049 -0.0047
Std | 00445 00445 00446 | 0.0447 00449 00449 | 0.0447 0.0446 00446
d=-0.10 d=0.00 4=0.10
g Bias| - -00003 -00004| -  -00018 -0.0017| - 0.0028  0.0027
sd | - 00394 0039 | - 00637 0.0636 ; 01024 01024
4 Bias | 00048 -0.0189 -0.0183 | -0.0043 -0.0185 -0.0184 | -0.0051 -0.0189 -0.0189
Std | 00492 00522 00519 | 0.0500 00528 0.0527 | 0.0492 0.0527 0.0527
o Bias | 0.0040 -0.0064 -0.0063 | -0.0027 -0.0049 -0.0049 | -0.0034 -0.0055 -0.0055
Std | 00454 0.0455 00455 | 0.0450 0.0451 00451 | 0.0443 0.0442 00442
d=020 4=030 d=040
g Bias| - -00013 -0002| - 00069 0.0093 ; 0.0301  0.0286
Sd | - 01811 01824 | - 03464 03509 - 06823 0.6887
4 Bias | 00046 -0.0191 -0.0191 | -0.0049 -0.0220 -0.0219 | -0.0129 -0.0301 -0.0299
Std | 00493 00529 00530 | 0.0467 00527 00528 | 0.0412 0.0462 0.0462
o Bias | 0.0047 -0.0067 -0.0067 | -0.0027 -0.0049 -0.0049 | -0.0034 -0.0051 -0.0050
Std | 0.0441 00442 00442 | 0.0430 00429 00429 | 0.0443 0.0443 00443
1 =1000
d=-0.40 d=-030 d=-0.20
g Bias| - -00001 -00001| - 00001 0.0001 - 00000 0.0000
Std . 00028 00034 | - 00052 0.0056 - 00088 0.0091
4 Bias | -0.0008 -0.0045 -0.0023 | -0.0006 -0.0046 -0.0037 | 0.0012 -0.0047 -0.0043
Std | 00253 00260 00258 | 0.0244 00248 00247 | 0.0252 0.0255 0.0254
o Bias | 0.0016 -0.0021 -0.0019 | -0.0006 -0.0011 -0.0010 | 0.0002 -0.0003 -0.0002
Sd | 00217 00218 00217 | 00226 00226 00226 | 00217 00217 0.0217
d=-0.10 d=0.00 4=0.10
u Bias| - 00012  0.0013 - 00001 -00002| -  -0.0016 -0.0017
Std . 0.0165 0.0165 - 00315 00315 - 00597 0.0598
4 Bias | 00017 -0.0057 -0.0056 | -0.0015 -0.0055 -0.0055 | 0.0014 -0.0054 -0.0054
Std | 00242 00249 00249 | 0.0246 00250 0.0250 | 0.0243 0.0247  0.0247
o Bias | 0.0010 -0.0015 -0.0015 | -0.0018 -0.0024 -0.0024 | -0.0000 -0.0005 -0.0005
Std | 00221 00221 00221 | 00219 00218 00218 | 0.0228 0.0228 00228
4=020 4=030 d=040
u Bias| - -00033 -00031| -  -00061 -0.0077| - 0.0397  0.0366
Std : 01177 01182 | - 02532 02555 - 05473 0.5534
4 Bias | 00036 -0.0078 -0.0078 | -0.0025 -0.0070 -0.0070 | -0.0045 -0.0089 -0.0088
Std | 00251 0.0259 00259 | 0.0240 0.0248 0.0248 | 0.0243 0.0255 0.0255
o Bias | 0.0013 -0.0018 -0.0018 | -0.0019 -0.0023 -0.0023 | -0.0012 -0.0016 -0.0015
Std | 0.0228 00228 00228 | 0.0224 00225 00225 | 0.0221 00221 0.0221
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TABLE II

25

Bias, STp AND RMSE oF ALTERNATIVE MLEs For FGN: i1 = 0 AND 0 = 1. MLE1 1s MLE wITH KNOWN ;

MLE?2 1s our Exact MLE; MLE3 1s PMLE.

| MLEl MLE2 MLE3 | MLEl MLE2 MLE3 | MLEI MLE2 MLE3
=250

\ H=010 H=020 \ H=030
p Bias| - 00001 0.0001 ; 0.0002  0.0001 - 00000 -0.0000
Std - 00031 0.0041 ; 0.0035 00039 | - 00039 0.0040
H Bias | 00006 -0.0039 0.0002 | -0.0024 -0.0079 -0.0060 | -0.0027 -0.0098 -0.0091
Std | 00232 00236 00230 | 0.0302 00306 00302 | 0.0352 00362 0.0360
o Bias | 0.0065 -0.0154 00042 | -0.0033 -0.0313 -0.0221 | -0.0017 -0.0382 -0.0345
Sd | 01157 01149 01153 | 01519 01501 01498 | 0.1833 0.1824  0.1820

H =040 H=050 H =060
p Bias| - -00001 -0.0001| -  -00000 -0.0000| -  -0.0003 -0.0003
Std - 00038 0.0038 ; 0.0040 00040 | - 00040 0.0040
H Bias | 00021 -0.0097 -0.0094 | -0.0015 -0.0108 -0.0107 | -0.0037 -0.0139 -0.0139
Std | 00389 00399 00398 | 0.0406 00425 00424 | 0.0414 00430  0.0430
o Bias | 0.0083 -0.0319 -0.0308 | 0.0147 -0.0357 -0.0357 | 0.0080 -0.0497 -0.0499
Std | 02155 02125 02122 | 0.2348 02330 02327 | 02497 02449  0.2449

H=070 H=080 H=090
@ Bias| - -0.0000 0.0000 - 00002 -00002| - 00001 0.0000
Std - 00040 0.0040 - 00041 00042 | - 00038 0.0038
H Bias | -0.0018 -0.0129 -0.0129 | -0.0005 -0.0139 -0.0139 | -0.0067 -0.0212 -0.0210
Std | 00416 00437 00438 | 0.0402 00433 00433 | 0.0379 0.0405 0.0405
o Bias | 00284 -0.0398 -0.0397 | 0.0483 -0.0437 -0.0430 | 0.0377 -0.0942 -0.0926
Sd | 02771 02706 02709 | 0.3256 03173 03179 | 0.4020 03565 03577

1 =1000

H=0.10 H=020 H=0230
@ Bias| - -00000 -0.0000| -  -00000 -0.0001| -  -0.0001 -0.0001
Std - 00008 0.0011 - 00012 00014 | - 00015 0.0015
H Bias | 0.0000 -0.0011 -0.0001 | 0.0006 -0.0011 -0.0007 | -0.0006 -0.0027 -0.0025
Sd | 00115 00116 00116 | 0.0152 00153 00153 | 0.0171 00175 00174
o Bias | 00013 -0.0043 0.0005 | 0.0065 -0.0026 -0.0003 | 0.0012 -0.0099 -0.0089
Std | 00575 00575 00580 | 0.0787 00789 00788 | 0.0887 0.0895 0.0894

H=0.40 H=050 H=0.60
@ Bias| - -00001 -0.0001| -  -00001 -0.0001| -  -0.0002 -0.0002
Std - 00018 0.0018 - 00020 0002 | - 00023 0.0023
H Bias | -0.0002 -0.0028 -0.0027 | -0.0010 -0.0037 -0.0037 | -0.0003 -0.0033 -0.0033
Std | 00192 00194 00194 | 0.0189 00192 00192 | 0.0206 0.0210  0.0210
o Bias | 00022 -00116 -0.0113 | -0.0017 -0.0169 -0.0169 | 0.0060 -0.0116 -0.0116
Sd | 01037 01035 01034 | 01075 01072 0.1072 | 01230 01231 0.1231

H=0.70 H=080 H=090
u Bias| - 00000 -0.0000]| - 0.0000  0.0001 - 00001 -0.0001
Std - 00027 00027 | - 00031 0.0031 . 0.0034  0.0034
H Bias | 00001 -0.0035 -0.0035 | 0.0007 -0.0030 -0.0030 | -0.0018 -0.0065 -0.0064
Std | 00203 00208 00208 | 0.0203 00208 00208 | 0.0211 0.0216 0.0216
o Bias | 00079 -0.0135 -0.0134 | 0.0185 -0.0089 -0.0086 | 0.0155 -0.0289 -0.0283
Std | 01302 01296 01296 | 01500 0.1490 0.1490 | 0.2205 02136 0.2138
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Bias, Stp AND RMSE or ALTERNATIVE MLEs ror FOU: k¥ =10, 0 = 1 anDp 1 = 250. MLE1 1s MLE witH
KNOWN (; MLE2 1s our Exact MLE; MLE3 1s PMLE.

TABLE III

| MLE1 MLE2 MLE3 | MLEl MLE2 MLE3 | MLEl MLE2 MLE3

| H=0.10 | H =020 | H=030
u  Bias - 00021 -00022 | - 00004 -0.0004| - 0.0014  0.0003
Std . 01166  0.1005 - 01047 0.0978 - 0.0984  0.0956
RMSE | - 01166  0.1005 - 01047 0.0978 - 0.0984  0.0956
H Bias | 0.0036 00080 0.0081 | 0.0036 0.0081 0.0084 | 0.0038 0.0078  0.0082
Std | 00297 00307 0.0306 | 0.0402 0.0403 0.0403 | 0.0462 0.0455 0.0455
RMSE | 0.0300 00317 00317 | 00404 00411 00411 | 0.0463 00462  0.0462
k  Bias | 02783 33820 33933 | 1.0258 43478 43914 | 17384 47370  4.7953
Std | 80909 10.0533 9.9980 | 7.3880 85961 8.5568 | 7.1869 8.0556  8.0456
RMSE | 8.0957 10.6069 10.5582 | 7.4588 9.6331 9.6179 | 7.3941 93451  9.3662
o Bias | 00265 00521 00528 | 0.0376 0.0648 00663 | 0.0479 00721 0.0742
Std | 01596 01743 01743 | 02296 02409 02409 | 02774 02796 0.2794
RMSE | 01618 01819  0.1821 | 02327 02495 02499 | 02815 02887 0.2891

H =040 H =050 H=0.60
u  Bias . 0.0020 00006 | - 00018 0.0003 ; 0.0022  0.0005
Std . 0.0939  0.0938 - 00899 0.0919 ; 0.0862  0.0902
RMSE | - 0.0940  0.0938 - 00899 0.0919 - 0.0863  0.0902
H Bias | 0.0041 00075 0.0079 | 0.0046 0.0071 0.0075 | 0.0048 0.0059  0.0065
Std | 0.0500 0.0488 0.0487 | 0.0527 0.0509 0.0509 | 0.0538 00516 0.0515
RMSE | 0.0501 00493  0.0493 | 0.0530 00514 00514 | 00541 00519  0.0519
K Bias | 21900 48790 49283 | 24532 4.8017 4.8287 | 24756 4.4301  4.4500
Std | 71367 77810  7.7719 | 71795 7.5057 75117 | 7.0800 7.2298  7.2463
RMSE | 74651 9.1841 92027 | 75870 89102 89298 | 7.5003 84791  8.5035
o Bias | 00577 00776 0.0801 | 0.0699 0.0831 0.0860 | 0.0801 0.0834 0.0875
Std | 03104 03088 03086 | 03485 03373 03378 | 03763 03568  0.3581
RMSE | 03157 03184 03188 | 03554 03474 03486 | 0.3847 03664  0.3686

H=070 H =0.80 H =090
u  Bias . 0.0024 00006 | - 00024 0.005 - 0.0027  0.0004
Std . 0.0831 00892 | - 00794 0.0882 - 0.0776  0.0873
RMSE | - 0.0831 00892 | - 00794 0.0882 - 0.0777  0.0873
H Bias | 0.0040 00039 0.0045 | 0.0038 0.0013 00023 | 0.0033 -0.0016 -0.0009
Std | 00531 00510 0.0509 | 0.0516 0.0494 0.0494 | 0.0415 00425 0.0422
RMSE | 0.0532 00512 00511 | 0.0518 00494 00494 | 0.0416 00425 0.0422
K Bias | 20427 36373 36150 | 1.2981 22510 22808 | -0.4930 -0.0475 -0.1009
Std | 67179 68232 6.8247 | 62694 61526 61850 | 39814 43394  4.3388
RMSE | 7.0215 7.7321  7.7230 | 64023 65514 65921 | 40118 43397  4.3399
o Bias | 0.0862 00809 0.0850 | 01143 0.0839 00922 | 01704 01174 0.1247
Std | 03987 03789 03800 | 04584 0.4182 04205 | 0.5160 05082 0.5106
RMSE | 04079 03874 03894 | 04724 04266 04305 | 05434 05216  0.5256
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TABLE IV

27

Bias, Stp AND RMSE or ALTERNATIVE MLEs ror FOU: k¥ =10, 0 = 1 anDp 1 = 1000. MLE1 1s MLE witH

KNOWN (; MLE2 1s our Exact MLE; MLE3 1s PMLE.

MLE1 MLE2 MLE3 | MLE1 MLE2 MLE3 | MLE1 MLE2 MLE3
H=0.10 H=0.20 H=10.30
u Bias - 0.0010  0.0008 - 0.0012  0.0011 - 0.0014 0.0012
Std - 0.0289 0.0303 - 0.0319  0.0325 - 0.0368 0.0368
RMSE - 0.0289 0.0303 - 0.0320 0.0326 - 0.0368 0.0368
H  Bias 0.0010 0.0016 0.0015 | 0.0008 0.0014 0.0014 | 0.0009 0.0014 0.0014
Std 0.0145 0.0145 0.0144 | 0.0191 0.0190 0.0190 | 0.0222 0.0220 0.0220
RMSE | 0.0145 0.0145 0.0145 | 0.0192 0.0190 0.0190 | 0.0222 0.0220 0.0220
x  Bias | -0.1356 0.4662 0.4094 | 0.3459 0.9577 09334 | 0.5840 1.1698 1.1679
Std 3.7385 3.7798 3.7731 | 3.3303 3.3923 3.3894 | 3.3122 3.3685 3.3658
RMSE | 3.7410 3.8085 3.7953 | 3.3482 3.5249 3.5155 | 3.3633 3.5658 3.5626
o Bias 0.0065 0.0100 0.0094 | 0.0059 0.0095 0.0094 | 0.0067 0.0097 0.0099
Std 0.0747 0.0748 0.0747 | 0.1021 0.1017 0.1018 | 0.1221 0.1215 0.1215
RMSE | 0.0750 0.0755 0.0753 | 0.1023 0.1022 0.1022 | 0.1223 0.1219 0.1219
H=0.40 H=10.50 H=10.60
u  Bias - 0.0015 0.0014 - 0.0016  0.0015 - 0.0017 0.0016
Std - 0.0420 0.0420 - 0.0475 0.0481 - 0.0534 0.0551
RMSE - 0.0420 0.0421 - 0.0475 0.0481 - 0.0534 0.0551
H  Bias 0.0010 0.0014 0.0014 | 0.0012 0.0013 0.0014 | 0.0015 0.0012 0.0013
Std 0.0243  0.0241 0.0241 | 0.0259 0.0255 0.0255 | 0.0269 0.0265 0.0265
RMSE | 0.0243 0.0241 0.0241 | 0.0259 0.0256 0.0256 | 0.0270 0.0266 0.0265
x  Bias 0.7287 1.2778 1.2806 | 0.8155 1.3301 1.3322 | 0.8647 1.3207 1.3197
Std 3.3593 3.3948 3.3937 | 3.4057 3.4304 3.4298 | 3.4398 3.4390 3.4412
RMSE | 34374 3.6273 3.6273 | 3.5020 3.6793 3.6795 | 3.5468 3.6839 3.6856
o Bias 0.0078 0.0099 0.0101 | 0.0093 0.0102 0.0103 | 0.0120 0.0105 0.0107
Std 0.1388 0.1376 0.1375 | 0.1539 0.1521 0.1520 | 0.1700 0.1670 0.1669
RMSE | 0.1390 0.1380 0.1379 | 0.1542 0.1524 0.1524 | 0.1704 0.1673 0.1673
H=0.70 H=10.80 H=0.90
u  Bias - 0.0017  0.0017 - 0.0017  0.0017 - 0.0018 0.0016
Std - 0.0597 0.0631 - 0.0663 0.0723 - 0.0728 0.0827
RMSE - 0.0597  0.0631 - 0.0663 0.0723 - 0.0728 0.0827
H  Bias 0.0015 0.0009 0.0010 | 0.0017 0.0004 0.0004 | 0.0029 0.0004 0.0007
Std 0.0274 0.0271 0.0271 | 0.0271 0.0267 0.0267 | 0.0225 0.0225 0.0225
RMSE | 0.0274 0.0271 0.0271 | 0.0272 0.0267 0.0267 | 0.0227 0.0225 0.0225
x  Bias 0.7907 1.2154 1.2087 | 0.6244 0.9236 0.9076 | 0.0312 0.1706 0.1774
Std 3.4432  3.4458 3.4471 | 3.2790 3.2548 3.2523 | 2.0054 1.9812 1.9411
RMSE | 35329 3.6538 3.6529 | 3.3379 3.3833 3.3766 | 2.0056 1.9885 1.9492
o Bias 0.0140 0.0106  0.0109 | 0.0230 0.0123 0.0125 | 0.0530 0.0268 0.0296
Std 0.1878 0.1848 0.1845 | 0.2200 0.2122 0.2124 | 0.2549 0.2464 0.2479
RMSE | 0.1883 0.1851 0.1849 | 0.2212 0.2126 0.2127 | 0.2603 0.2478 0.2497
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5. CONCLUSION

Gaussian processes have gained significant attention due to their broad appli-
cability across various scientific and applied disciplines. To obtain the MLE, two
common approaches are typically employed. The first approach maximizes the
likelihood assuming i is known and set to 0, which results in an unrealistic MLE.
The second approach uses the sample mean as an estimator for u, leading to a plug-
in MLE. However, both methods fail to address the inefficiency of the estimator
for u, and concerns have been raised about the finite sample performance of the
plug-in MLE. Adenstedt (1974) proposed an efficient but infeasible estimator for p.

In this paper, we introduce a novel exact ML method for all parameters in general
Gaussian processes with long-memory, short-memory, or anti-persistence proper-
ties. We prove that the exact MLE exhibits consistency and asymptotic normality.
We also establish the LAN property of the sequence of statistical experiments for
general Gaussian processes in the sense of Le Cam, which directly yields efficiency.
Our method offers a comprehensive understanding of MLE for fractional Gaussian
models. First, we show that the estimators for all parameters are optimal, effec-
tively complementing the infeasible estimator for u proposed by Adenstedt (1974).
Second, we evaluate and compare the performance of the plug-in MLE, exact MLE
and MLE with known u. The plug-in MLE performs as well as the exact MLE for
all parameters except for p. The discrepancy between plug-in MLE and the MLE
with known p is not due to an inefficient estimator for y.

The Whittle MLE is asymptotically equivalent to the exact MLE under certain
regularity conditions. Although its finite-sample performance is generally inferior
to that of the exact MLE, the performance gap narrows as the sample size in-
creases. At the same time, the computational burden of the exact MLE increases
substantially due to the need to invert the covariance matrix at each evaluation
of the likelihood function—a step that the Whittle method avoids. The Whittle
ML method remains an attractive alternative. However, existing theoretical results
for the Whittle MLE primarily pertain to ARFIMA models and do not extend to
continuous-time models. In future work, we aim to investigate the optimality of

the Whittle MLE for general Gaussian processes.
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APPENDIX A: ArrenDIx: PROOF OF THEOREMS

A.1. Proof of Consistency in Theorem 1

First, we introduce and summarize notations used in the proof. For a R-valued
function f on some set A, we write fy(a) := max{+f(a),0} for a € A. Then we have
f=fi—f-. Let Z,, := X;, — oly. Recall that £,,(&) = €,(&,04(E), n()) that can be
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written as

Zn(E) = —ga +log(2m)) — glogaﬁ(g) - %log det[Z,(sD)]

In addition, we introduce

1
03(&) 1= 03(&, 0) = — (X = ptoTn) " (7)™ (X = proln), 0*(8)

2

a, (™ ng(o(w)
= —f < dw.
27 -7 Sé ((U)

(23)

(24)

Write x(&1,£2) := (ax(&1) —ax(&2))+ /(1 —ax(&2)+) and xo(&1) := x (o, &1) for &3, &2 €
O¢. Then we introduce a restricted parameter space of ©¢ by

O(1) :={E€Bs: xo(&) <1-1}, t€(0,1).

Set Ly (&) := —22,(&) and

1

X
L(¢&) := (1 +1og(2m)) +10g(%f Séo(w) da)) +—

T s?(a))

which is actually a limit function of L,(&) on ©Og(t); see (27) for details. Note that

L(¢) is finite in O (1) for any ¢ € (0,1) and we can write

T § o(w) d i
L(é)—L(éo)=log( f Si(w) 2—;”]— f lo

so that Jensen’s inequality of the strictly concave function and the identification

21

condition on {sg }oe@ In Assumption 1 give the following.

f_ nlogsf;(w)dw,

@ do

s?(a)) 21’

inf L(E) > L(&), Ye >0, Vie(0,1).

£€@L (D IE—Eollyp-12¢

(25)

(26)

To prove the consistency of {&;},en, we first prove the uniform convergence,

sup |L.(&)—L(&)| = O]pgo(l) as n — oo,

E€O(1)
Note that we can write

Lu(€)~L(¢) = (loga;(&) ~log o™ (&) + (% logdet[Z,(s})] -

2

1 n X
7z[ﬂlogs‘5 (w)da)).

(27)

(28)
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By the uniform convergence version of Szegt’s theorem (Lieberman et al., 2012):

1 1 (7
sup |—logdet| X, (sX)| - — f lo sX(a))da)‘=o(1) as n — oo. (29)
sup | log [Zus)] -5 | Toss;

Moreover, we can also show the uniform convergence,

sup [57(8) = 0*(&)| = opr (1) asn — oo, (30)
£eO¢(1) 0

whose proof is left to Section B.3 in Online Appendix. Then we also obtain

sup |log5ﬁ(5) —10g02(5)| = opr (1) asn — oo, (31)
£€O(1) 0
which can be proved using (30) immediately. However, we also give a detailed
proof in Section B.4 in Online Appendix for completeness. Then we conclude (27)
using (25), (28), (29) and (31).
Now we give a proof of consistency of {a}neN using (26) and (27). For each
t€(0,1), we define

&) = arg max{y,(&) = arg minL,(&).
E€B(1) E€B¢(1)
Similar to Robinson (1995), Velasco and Robinson (2000) and Lieberman et al. (2012),
we divide the proof of consistency into the following two steps.
Step 1: We prove that for each ¢ € (0,1), En(L) is a consistent estimator of &, i.e.
&) > & in H’go-probability.

Proor or Step 1: The conclusion follows immediately from (26), (27) and the
definition of gn(t) Q.E.D.

Step 2: We prove that there exists ¢ € (0,1) such that Enm En(t) —0in IP";O-probability

as n — o0.

Proor or STepP 2: If O = O¢(1) holds for some ¢ € (0,1), the equality En = 2,1(0
holds so that we immediately conclude the assertion of Step 2. In the rest of the
proof, we assume that ©O; \ ©¢(¢) is a nonempty set for any ¢ € (0,1). Then, for any
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t€(0,1) and €,e1 > 0, we can show

P (16— E(0)llge > €] gn)go[ inf L&) < inf Ln(g)]

£€@\O¢(1) E€O:(1)
<Py [ inf 1O <L +ar |+ Py LG W) - Lol zer] (D)

Note that for any €1,€2 > 0, the second term of (32) is dominated by

P&Duxém»—l@%nZedswgﬂaxo—amz64+IﬁJsggJuma—L@MZed
EeO: (1

+ ngO[Ign(L) —&ol < e, |L(En(l)) —L(&)| = 61]_ (33)

Then the continuity of L(£) on ©¢(1) shows that for any €1 > 0, there exists € > 0
such that the third term of (33) is equal to zero. Moreover, we can also note that the
tirst and second terms of (33) are negligible as n — oo using the result in Step 1 and
the uniform convergence (27), respectively.

Finally, we evaluate the first term of (32). Recall that xo(&) = (ax(&o) —ax(&))+/(1—
ax(&)4) for & € O¢. Take sufficiently small ¢ € (0,1) satisfying 1 -t > ax(&o)+. Notice
that g(x) := (a—x)+/(1 —x4) for a := ax(&p) € (—o0,1) is a continuous and monotoni-
cally decreasing function on (—oo,a] and g(0) = ax(&p)+ <1-1t.Sowe geta) ax(&) <0
for any £ € O \ Os(1), b) ax(&1) = ax(&2) for any & € Os(1) and & € O \ Of(1), and
c) there exists some point £1(t) € ©¢(t) such that a(&1(1)) = =1+ ax(&o) —  holds since
O \ O¢(1) is not empty. Since ax(£1) > ax(&2) for any &1 € Og(1) and & € O \ O (1),
using Lemma 3 of Chong and Mies (2025), we can show that there exists a constant
C1 > 0 such that for any &; € O(1) and & € O \ O¢(1),

-1
ﬁ@<mnm@)mm

1 1 1
< = 120 (X ) 220X ) 2 lop < = (34)
03(E2) " xRt [, (X ) Hxdlge o “ C1

Set £1(1) := -1+ ax(&p) —tand

1 1 (7
rn1(E) == logéﬁ(é)—logaz(é), rn,z(cf)::Elogdet[Zn(sg)]—Ef logs?(a))dw.

Since ax(&1(1) > ax(&2) for any & € O \ O¢(1), the inequality (34) yields

Lu(€2) 2 (1 +10g(2m) +10g s +10g03(61(0) + .- logdet[Z, (5% )|
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1 s
> (1+log(2m)) +1logCy + loggz(él(L)) + Ef logsé(w) dw +71,1(E1(1) +14,2(E2),

and

37

1 (7 c T 1 (7
2 — X _—t =1+t il —ax(&2)
logo“(&1(1)) + o f:n logs52 (w)dw > log(znc_ j:n || dcu) + 5 fﬂ ]og(c_|a)| )da)

> log(%) + log(nT) +logc_ —ax(&1(1))(logm—1).

Therefore, on the set A1(61) NA2(62) with A1(5) := {sup&@g(l) lrn1(E)l <6} and A (6) :=

{supée@(E [rn,2(E)| < 6}, we obtain infge@g\@é(o L,(&) = L(1,61,02), where

L(,61,62) := (1 +log(2n)) + log C; + 1og(7%) + 1og(”7) Floge- —ax(& () (logm—1)— (61 +

52).

Since L(t,01,02) diverges to infinity as t — 0, for any €1,01,062 > 0, there exists
t=1(e1,01,62) € (0,1) such that L(t,61,02) > L(&g) + €1. Then, as n — oo, we obtain

n : <
Pt [&@1;\% (L@ <L)+ 1

2

< Y P [Aj6)°] + P [A1(61) N Ax(62) N{L(1 61,82) < L(Eo) + &1 || -
=1

using (29) and (31). This completes the proof of Step 2 and consistency.

A.2. Proof of Asymptotic Normality in Theorem 1

Before proving the asymptotic normality of the sequence of the exact

0

Q.E.D.

MLEs,

we summarize notations used in the proof and prepare several limit theorems

repeatedly used in the proof. Recall that

£a(6) = -5 (1 +log(2m)) ~ 5 loga3(6) ~ 5 logdet Z(sY)],

Then we can show

2. 1 1 -
a0 @) = 25 S AT+ T [ Za@HEA) .

_ 52 95>
_iaijgn(g)z_(_&on(a)(_ o (é)]%; 2

20 N\ 2o ) 2o

1 1 _ _
+ ETr[Zn@% jsg)zn(sg()—l]— ETr[Zn(&s}g)Zn(s?) '@

(35)

(36)
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Here notice that —%8ifn(£) in the expression (35) can be decomposed by

2570 = 2 — L o2+ Lo+ X Ky (%)l
nazfn@)—[a% o Gé)azon«swOéazon<a+nTr[Zn<azsg prCoN 3
so that we obtain the expression 5
O T R (- (_3§5ﬁ(50))_ﬁ O 6
e (9:0%(E0) B, [9:53(20)]) 7
=- if(a%«so) —og)ap-1(&0) — if (9¢57(80) ~ S [9:53(E0)]) +opr (1), 37) 8
204 205 o 0

where we used (30) and Lemma 5 in the last equality. Moreover, combining (37)

with Lemma 6, we can show that
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1295 0,(E0) = N(O,V,_1(£0))

in law under the distribution ngO as n — oo, where

Vp-1(&o) := lim Varg [—2%2(5%(50) ~0p)ap-1(£0) = = (e (o) — B, [955%(50)])]

=S 1(E0)p1(E0) T+ F1(€0) + 20,160 (38-1(60)) = Gpa(So)

. . = N R
Moreover, using consistency of {&,},en, we can show that n729:6,(E,) = opr (1) as
0
n — oo so that, using the Taylor theorem and (38), we obtain, as n — oo,

1 — —~ _ o~
fo G-+ 1(Es = E0) du VR(E, — o) = —=05TulE0) = =060u(E) = NO, Vi1 (o)

in law under the distribution lP’éo, where G,1,,(&) = —n_18éfn(€). Then, combining
the uniform convergence in (54) with the continuity of the function & - G"I(&,00)

at £ = o and using (39) and Slutsky’s lemma, we obtain the stochastic expansion
Gp-1(80) Vi(En = E0) = ~=0clu(E0) +omy (1) as = e
Moreover, using Taylor’s theorem and Lemma 5, we can also show that

Vi(@u(En) — 00)

(531(51) —05) +opr (1) asn — o
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and
%((ﬁ@) ~a2) =%§(6i@) — (o)) + %((ﬁ(éo) ~ay)
=%%<‘/5@_50)';_8f01 2652 (o +0(E _50))dv>w_l +%’Z(5ﬁ(éo)—oé)+0pgo (1)
:2—5 (Vi(En = 0),~ap1(00)) g, + %‘6&(60) ~09) +opy (1 “

as n — co. Combining (37) with (40), as n — oo, we get

Nn
03

0

2
V(G = £0) == 26y 1(0) gy 1(00) 5 @)~ 0?)

—Qp—l(éo)_lz_g(955%(50)—11“:?;0 0:530)]) +opr (). (43)
0

Using (41) and (42), as n — oo, we obtain

4 2
Vi(@n(En) = 00) = { 2y 1(600)" G2 (£0) ap1(00) + %} V2 2 20) - o) + opy (1)

i 7
2
+%<—i§(3éﬁi<éo>—ﬂi§0[Bsﬁi(ém]),—gp_1(£o>-1ap_1(eo)> T
205 -t

Therefore, using (43) and (44), the estimation error (0, — 00) = (Vn(&, -
&0), Vn(on —00))T is expressed by

1 _% T 1
i@, - 60) = p Gp-1(So) . > a-1(60) ' Gp-1(&0) L aior @
—2ay-1(60) " Gp-1(E0) ™" 2ay-1(00)T Gp-1(&0) " ap-1(00) + 3 h
=Fp(00) " T + o 1), (45)

where the last equality can be proved in a similar way to the proof of Lemma 4 in
Fukasawa and Takabatake (2019). Combining the expression (45) with Lemma 6,

we complete the proof of Theorem 1.

A.3. Proof of Theorem 2

Before proving Theorem 2, we prove the asymptotic normality of MLE of .
The following proposition is needed with its proof found in Section B.5 in Online

Supplement.
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ProrosiTION 1: Assume that Assumption 3 holds and a sequence of estimators {gn}neN

N

satisfying that the sequence of rescaled estimation errors { \/E(En —&0)}neN is stochastically

bounded under the sequence of distributions {ngo}ndN- Then we can show that 3

o

2nogex(E0)T(1 - ax(&o))
"B(1-ax(&0)/2,1-ax(&0)/2) 6

7

n%(l—ax(éo))(‘un(gn) — o) = N0

in law under the distribution H’go as n — oo for any interior point 9y of ©. .

Recall that @,,(9) = diag(n_%Ip,n_%(l_“X(EO))) and o
10

121—211(5?)_1)(11 11

1,2, (s?)_lln 12

13

G = 5 0 =) ZuE) T X =), B = GHE o), ) =

__n n 21 X n oo
£(9) = 5 log(2m) - 5 logo® ~ logdet|Z,(s¥)| - S OHED.

14

. - . . 15
Then, using the formulas of derivatives of the log-determinant and the inverse

matrix (e.g. see Harville (1998)), the first-order derivatives of the Gaussian log- 1

. . . . 17
likelihood function &, (3) with respect to parameters can be written as

18

agfn(S)Z—lTr[Zn(Sg)_lzn(aéﬁg)] S59:0%(E, 1), ) 10
: 20
Ioln(9) = =2+ B0n(&, 1) uln(®) = 517 Z(s) ™ (X = piln) 5
Then we can write 22
" 23
0:(30) = =5 (9:(E0) ~ Y, [0:7(£0)]), 24
0 25
Jalu(S9) = —3( 2(£0)=03), Fulu(So) = > AT ) ) (a0~ o), 2%
% 0 .
so that the normalized score function C,(90) = ©@,(90) Tds€n(do) is expressed by 28
29
\/E \/E (l;ll'zn(s 1111) aéo_n(é()) IE” [aéa (50)] 30
n(So) = diag| ———=1,_1, —, . 47
Cu(So) = diag L ng%(l—ax(éo)) 5a(&0) - 47)

0 0 Hn(CEO)
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Then we can prove the following central limit theorem

L(Cu(9)IPG) — N(0,1(9)), asn — oo, (48)

whose proof is left to Section A.5 in Online Supplement. Moreover, we can show

Vn

+0]pgo(1) asn — oo. (49)

9:03(80) ~ By 0e03(€0)l| | 2f0e0(E0) ~ 5 1067 (Zo)]
55(E0)— 0} .

whose proof is left to Section A.6 in Online Supplement. Combining the expression

of the estimation error \/5(5,1 — 0p) in (45) with that of ,,(9¢) in (47) and using the

equalities in (65) and (49), we conclude
CI)11(‘90)_1(:’:1 —90) = Cu(So) + O]I)go (1) asn — oo.

We complete the proof of Theorem 2.

A.4. Proof of Theorem 3

Recall that ©,(9) = diag(n_%Ip,n_%(l_“X(E))). We first give an outline of the proof
of Theorem 3. Using the Taylor theorem, the log-likelihood ratio is written as

dP? 1
log %(XH) —uTCy(9) - % fo (1=2)3264(8 + 20 (9)0) [ (@4 ())*?] dz

1
UG ()~ 2 f (1=2) T (9 + 20, (9)u) [(Ru(8, 20, (9)u)u)**] dz, (50)
2 0
where R,(9,0) := @, O +0)7! @, (9) for v € RP*!. Since we have the CLT for the
stochastic sequence {C,(9)};7; in (48) and the inequality

1
f (1=2)T (S + 2D, (8)11) [(Ru(S, 20 (9))11) ™| dz - uT T (S)u
0

< ||Rn(‘9/Zq)n(‘9)u)TIn(‘9 + 20, () u)Ry (8, 2Py (S)u) — I(S)||1||Ll||2

]Rp+1’

where [|All; := Zz i=1 laij| for a p X p-matrix A = (a;j); j=1,..p, we can conclude Theo-
rem 3 using the triangle inequality, multiplicativity of the matrix norm ||-||;, and

uniform continuity of 7(9) on compact subsets of ©, if we can prove

sup IRn(9,0) = Ipsally = opr (1) asn — oo, (51)

VERPL|[o]| 1 <ClIP(9)llop
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11 (3) = Z(9)ll = opn(1) asn — oo, (52)
sup |78+ Du(S)u)—I,(9)lly =opn (1) asn — oo, (53)
€U, (9) ¥

for any ¢ > 0, where U,(9) := ©;'(@)(@© - 9) = {u € RF* : 9 + D, (9)u € O} and
U,c(9) := {u € Uy(I) : llullgp+1 < c} for c > 0. In the rest of the Appendix, we try

to prove the above three results.

A.5. Proof of (48)

1
Set Z,, := Zn(sgo)‘i(xn — tol,) ~ N(0,1,,). For u, = (ul,...,up)T € RP and up+1 € R,
we write

-2 19,82
‘\/E \/% (111-2”(5)9(0)*1171) aéan(50)2 ]Eso[z?; n(éo)]
e [T . _\n N Gn=nSg,) ) 3
]Vl(ull-”/up+1) = (up uP"‘l)Xdlag 2 %Ip_ll (78 I o'zn%(l—ax(éo)) X an(éO)_aO
° tn(E0) — o

Then [y, (u1,...,up+1) is rewritten as

-1
_1 -1
ujZZZn(ng) 7 Zn(ajsgo)in(sgo) 2Z,

=

n\U1,--+, +1) =
Jn(u Up )

1
2+vn

1l
—_

j

— _1
(1;—{2?1(5)9(0) 1111) (Zn(s)g(o) 1,)" Zy

1
+ 00 nupz;ll—z” * n%(l—ax(éo)) A 1;1"2"(5)9(0)_11;1
= %Z;Zn(s}e(o)%zn(g;; """ ”p)Zn(ng)’%Zn + n’%“’”X(éo»uwl(z’i(sgo)%1")sz
where
1 p-1 1
Sy (@)= 3 ) uidjsy (@) + iy (@)
j=1
Ul,..es

Since the matrix Zn(sgo)_%zn(g i )Zn(sgo)_% is symmetric, there exists a nth

6o
square matrix V, such that V,, is an orthogonal matrix and

Ui,

_1
Vi Zn(s)gio) 22 (890

")T(s5 )2V, = diag(Ay - Aun),

ui,..., u _1
63) ’ )Zn(sgo) 2. Then

we set a n-dimensional random vector W, = (Wy ,,,..., W, ,) T and a n-dimensional

where {A;,}i=1,.., are eigenvalues of the matrix Zn(sgo)_% Xn(g
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7

8

9 Set U, := n"%Aj,n(Wzn -1+ a(_)zn"%(1"“X(‘50))Aj,nw]-,n. Notice that {Uj}=1,..n is an
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(non-random) vector A, = (A1 ,,...,Ann)" by

Wn = VnZn and An = up+1

_1
vnzn(s’go) 21,.

Notice that W,, is a n-dimensional standard Gaussian vector and we can write

n

1 1
]n(uli---/up+1):Z{Tl ZAj,n(W]z.ln—l)+n 2(1 “X(‘EO))A];nWj,n}.

j=1

j/

18 independent triangle array with mean zero and variance
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Var[U;,]

_,,—132 2 2 —-(1- 2 2
=n"' A7 E[(W3, = 1] +n~(-oxC)AZ E[W2 ]

_1 _1q_
+2n" 2 30 XCD A BI(W, ~ W]

=2n~ 12 4y~ (1-ax(Co)) 42

jn Jo

where we used the facts that

n’

]E[(WJZ.,n -1)?]= ]E[W;.L’n] —2]E[w§n] +1=2, E[(w]%n ~1)W;,]=0.

Then we can also show that

Var

n
2 Uin
=1

~ 1
Fo-11(60) := >

uT

n n n
2 2 —(-ax(E 2
=Y Var(Uj,] = - Y A2 o) YT 42
j=1 j=1 j=1

20 —(1-
~Tr[diag(Arn, ..., Aun) ]+ XCO A I,

U ey

2
ZTr[(Zn (390

sym. 20, 2

Tr[(Z, (alsgo )En (5)9(0 )™

Tr[Z, (ap—ls)éo )Zn(sgo)_l Zy (315)9(0 )Zn(sgo)_l] e

: [%p_l,nwo) o T Qs ) Za(s5) ™)

V(s )+ CO TR, (s )7M,)

)+ u}zﬂ—ln—(l—ax(éo))(1;ll'zn(s>6(0)—lln),

oo Tr[Zn(04 S§0 )Zn(sgo )1y (apfls}g(o )En (Sgo )

Tr[(Zn (ap—ls)g(o )Zn(sgo )2

43
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so that Lemma 4 and Theorems 4.1 and 5.2 in Adenstedt (1974) yield 1
2
2nogex(E0)T(1 - ax(&o))
lim Vi Uj,|= 0 0 3
oo JZl: | =2 Tpoy uPH B(1—ax(£0)/2,1-ax(&0)/2) p+1j(90)up+1
4
Moreover, we can show that >

E[U},1 < 4n B[ (W7, = DI*] +40g X1, (s5) 1) BIA;, WM.

Here notice that, since {W; ,}"_, is an independent centered sequence for eachn € N,
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j=1
we can show

n
IE['ZA],HW],H
=1

which implies

n
Y04l =]
j=1

Jij2j3.ja=1 i=1

n

ZA Wi,

j=1

1

4]: Z HAh E[Hwkn]f ZA4 E[w! ]+3[2A2 E[W2, ]2

n 2
Y 1471
L

=ud 1 (BIEa6Y) 210 Za*1 - 31 AIR, )

=0} 1 (3L (55 )1 10)* =31 Ll ) 1)7) = 0 18
19
where we used (Zn(sgo)"%ln)TZn ~N(@,1] Zn(sgo)_lln). Moreover, we can show 20
21

2 1y — 8 _ 46 4 _ a2 _
E[(W3, =1)1= ]E[W].,n AWS, +6W; —4WS + 1] = ’
so that we obtain 23
Y B, < 220 Z A= 2 Teldiag(A e )] = 2 T g () ] -0 8
— 25
using Lemma 4. Therefore, we have succeeded in verifying Lindeberg’s condition. 26
So we conclude the result. 27
28
A.6. Proof of (49) 29

Recall that

en,1(€) = 03(8) = 573(&) = =1~ (un(E) — t0)* 1y Tu(s) 1

ns

30

31

32
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zen1(8) = =207 (n(&) = 0} ttn(E) Ly Zn(s) 1y =17 (un(E) — t0)* 1 I Zn(s7) ' 1,

see (61) and (62). Notice that, using Lemmas 1 and 2 and the Cauchy-Schwarz

inequality, we can show that
Vney,1(&0) = opy (1) and Vndsen,1(&o) = OJPgO(l) as n — oo.

Moreover, ]Ego[ﬁﬁ(cfo)] = n_lTr[Zn(s‘%{O)Zn(s?0 )y 1= 0% holds so that we complete the
proof of (49).
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1 APPENDIX B: ONLINE SUPPLEMENT TO “OPTIMAL ESTIMATION FOR GENERAL
2 GaussiaN Processes” BY TAKABATAKE, YU, AND ZHANG (NOT FOR PUBLICATION)
3

B.1. Some Useful Lemmas

In this subsection, we summarize preliminary results used in the proof of theo-
rems in Section 2, whose proofs are left to Section B.2. The following two lemmas are

useful to prove Theorems 1 and 2 and are frequently used in their proofs. Recall that
s wewrite x(&1,&2) = (ax(&1) —ax(&2))+/(1—ax(&2)+) €[0,1) and xo(&1) = x(&o, £1) for

9

10

11

&1,82 €O,

Lemma 1: Under Assumption 1, we can show that for any i,j,k€{1,2,...,p—1}, e >0

and 6 € O,
12
13 |17 9 (s5) 11| < CA Za(s3) 1),
14 ,
N 1,07 jzn(sg 11,| < CA Za(sE) )0,
16 17 agj,kzn(sg)-m <C(1,; Zu(sy) ' 1u)nc,
17

and

18

19

20

21

1 (s) ™ Zalsh ) En(sy) ™ 1 < C(1 Zuls) 1)),

17 9;En(s5) (5K )OiTa(58) 1 < CAT S(s3) 11, 100,

i 1702 Tn(s5)  Zu(s5 )02 Tn(s) 1 < C1T S(s5) T 1) 0,
23
2 173 T (s5) (s )03 Tn(55) T L < C1y T(s5) T 1) 0@,

25
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Lemma 2: For any q € IN, there exists a positive constant C, such that for any i, j,k €

{1,2,...,p—1},e>0and 0 €O,

El [
E! [

8§jun(é)\q
ai]’,kl‘ln(é)

|
|q

]S

Cq(lﬁn(sg)‘l ln)_%n%)(o(é)%,

< Cy(1T T (s1) 1)~ Endro@ e,
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To prove consistency and the asymptotic normality of the exact MLE in Theo-
rem 1, we need to verify uniform convergence of 0(&) and its derivatives. Then
we repeatedly use the following Sobolev inequality, which can be proved using
Theorem 4.12 of Adams and Fournier (2003) and the Fubini theorem.

Lemma 3—The Sobolev Inequality: Let d € N, ©, be a bounded open cube in R?, ©,
be the closure of ©., and {(X,, An,IPY)}nen be a sequence of complete probability spaces.
Assume that {un(0,xn)}6 x,)e0.xX, 1S a sequence of pathwise continuously differentiable
random fields, i.e. for each n € IN, it holds that

o the function O — u,(0,w,) is continuously differentiable on ©, and uniformly con-

tinuous on O for P-a.s. x, € Xy,

o the functions u,(-,-) and dou,(-,-) on O, x X, are B(O.)® X,-measurable, where

B(®.) denotes the Borel -algebra on the set ©..
Then for any q € IN satisfying q > d, there exists a positive constant C; = C1(q,d), which is

independent of n, x, and u,(-,-), such that
’ q ’ q ’ ’ q ’
sup |in(6", 3| < Cy [ f 1@ )| O + f 9oa(@, )L 6 ]
0’€0, 0. 0.

hold for any n € IN and IP}-a.s. w, € X,,. In particular, we get

]EPf[sup |un(6',-) q] +IE]Pf[

0’€®.,

a@”n(el,')

]

for the positive constant Cy := C1(g,d)m4(©.), where my(A) denotes the Lebesgue measure
of a measurable set A of RY.

q] < Cy sup {]E]Pf [|un(6’,-)
0’€®.

RemARrk 6: We provide a clarification regarding the proof of Lemma 3. In the
Sobolev inequality and the Sobolev embedding theorem, the geometric structure
of the domain and its boundary plays an essential role. The version of the Sobolev
embedding theorem given in Theorem 4.12 of Adams and Fournier (2003) is stated
under the assumption that the domain ©. satisfies the strong locally Lipschitz condi-

tion; see Section 4.9 of Adams and Fournier (2003) for its definition. However, since
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O. is bounded, it suffices to assume that ©. has a locally Lipschitz boundary, that is,
for each point 6. € dO., there exists a neighborhood U(6.) such that U(6.) N dO.
is the graph of a Lipschitz continuous function. In particular, any bounded open
cube in R? has a locally Lipschitz boundary. Therefore, Theorem 4.12 in Adams

and Fournier (2003) directly implies the result stated in Lemma 3.

Next, we provide a precise approximation error bound for the trace of the prod-
uct of Toeplitz matrices and the inverses of (possibly different) Toeplitz matrices.
The entries of these matrices are defined via the Fourier transforms of the spec-
tral density function and their derivatives with respect to the model parameters.
This result is particularly useful for evaluating the cumulants of quadratic forms
of Gaussian vectors arising from stationary Gaussian time series, as well as the
cumulants of their derivatives with respect to model parameters, where the matrix
in the quadratic form is given by the inverse of a Toeplitz matrix associated with a

spectral density function.

Lemma 4: Let g€ N, {ozj}‘;fil be a family of continuous functions on g to (—oo,1),
{ f]'}?il be a family of 2mt-periodic even measurable functions on R satisfying the following
conditions for each je{1,...,2q}and r € {1,...,q}:
(a) fjis continuously differentiable on R\ (21Z),
(b) for is non-negative almost everywhere and the set {x € [-m, 7] : for(x) > 0} has a
positive Lebesgue measure,
(c) there exists constants c4 > c— > 0 such that, for any 6 = (£,0)T € ©, x € [-7, 7], the
following inequalities hold:

dfj

el 1) (x, O) + x|

(x,0)| < cy and |x**© fo(x,0) > c_.

For & = (1o ég)T € @2’7, we write

L (@1(Ear-1) — 2r(E)) s (@2ra1(Ere) — a2r(E20))4
1—ag (&) 1—a(&ar)+ ’

Xq(é) =

r=1
where azq11(&) := a1(&) and Epg41 := &1 for notational simplicity, and then we introduce a
restricted parameter space @E(L) defined by @E(L) ={E=(&1,---, &) € @éq Xq(©) <1-4
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4
1 for 1 €(0,1). Then we obtain 1
q n 4
4| n f2r-1,05,_, (%)
En(f2r-1,00_1) Xn(f21,6,,) ! ——f o
1_! " T nl_! f2r,0,)

5 as n— oo uniformly on compact subsets of ©¢(1) for any € > 0 and 1 € (0,1), where we
6 write fo(x) = fi(x,0) for (x,0)" € [-7, ] x©. 6

3 pO€Ty dx| = o(1)

w

o

We provide a remark on the proof of Lemma 4. The proof relies critically on
Theorem 1 in the supplement of Takabatake (2024) and Lemma 3 of Chong and
o Mies (2025). As a result, following the proof steps of Theorem 3 in Lieberman
et al. (2009), the assertion of Lemma 4 can now be justified using Theorem 1 in
Takabatake (2024), in place of Theorem 2 in Lieberman and Phillips (2004), and
Lemma 3 of Chong and Mies (2025), in place of Lemma 2 in the Online Supplement
of Lieberman et al. (2012).

Here we prepare the uniform convergence of 9:62(&) and 82 52(&) on Oc(1).

11
12
13
14
15

16 Lemma 5: Under Assumption 1, we can show

17 17
18 sup [0,03(6)=9i0%(®)| = opy (1), sup 'agjag(g)—agj&(g)‘:oﬂag (1) 18
. £€O; () £€O:() ' 19

20 fori,j=1,...,p—1and 1 € (0,1), where 6*(&) is defined in (24). In particular, we write 29

21 2 . as}c((w) SX (a)) X( ) 21
C20ey ﬁ e <o __%Y%0 X <o
22 oi0(e) = 2n \[n[ sff(a)) ][sx(a))] - f Iilogs; (@) ( )]dw, 22
23 n 82 X( ) s (L)) S)f ((U) 23
99 2 & o
24 82 o2& = an [ W][%] —f 8 logs 8 logsg(w))[%] dw. 24
25 N 25
26 Define (p — 1)th matrix-valued continuou§ ‘functions Gp-1n(&) = (QZ] (E))ij=1,.p-1 26
27 and G, _1(&,00) := (G(E,00))i j=1,...p-1 by G/ (&) = —%Q%jfn(cf) and 27
28 28
. 52 0:0%(&
29 G"(&,00) :=— %(—812 (5))(— ]2 ( )) + 21 97, 2(E) 29
. © o ) e .
31 T (91 jsé (a)) 1 T X X 31
32 T 47’( -7 SX(CU) - E In (&l logsg (w)) (a] logsé (w)) dw 32
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OPTIMAL ESTIMATION FOR GENERAL GAUSSIAN PROCESSES 5

foreachi,j=1,...,p—1. Notice that, using the expressions of 9;0%(&p) and 81.2j02(c§0)

in Lemma 5, we can write

Gp1(60) 1= G160, 00) = ~ 31 (Etp1(E0) T+ Fp1(Eo).

Moreover, using the expression in (36), Lemma 4, the uniform convergence in (30)

and Lemma 5, we obtain, fori,j=1,...,p—1,

sup )|gi;" (£)~G"I(&,00)| = opy (1) as 11— co. (54)
56@5 L 0

Moreover, we also prepare the following central limit theorem, whose proof is
omitted since a stronger result than Lemma 6 is proved in (48) and it can be proved

as a corollary of (48).

LemMma 6: Under Assumption 1, we can show

\/— \/—)(355%(50)—Ego[855%(50)]

G, = diag( 1,
zlp1r 3 52(£0) — 03

- N(O,ﬂ(@o)) asn — oo,
200 o

where the matrix F,(0) is defined in (3).

B.2. Proof of Lemmas in Section B.1
Proor or LEmMma 1: First, by the chain rule, we have
aizn(sg)_l == Zn(sg)_lzn(aisg)zn(sg)_l
812’].):,1(5?)_1 :Zn(SX)_lZn(ajs()g{)zn(sx)_lZn(aisx)zn(sx)_l
_Zn(SX) 1):,1(81] g)zn(sx) +Zn(5X) 12,1(8 SX)Zn( X) 1211(a iS¢ )Zn(s ) ’
8?]1( n(s X) T=- Zn(sg)_lzn(aksg )Zn(sg )_1Zn(ajsé()zn(sg)_lzn(gisg )Zn(sg)_
+ Zn(sg)_lZn(a?’ksg)zn(sg)_lzn (aisg)zn(sg)_l
- Zn(sg)_lzn(ajsx)zn (SX)_lZn(aksx)zn(sé()_lZn(gisé()zn (Sg)_l
+Zn(sx) 1):,,1(8 SX)Zn( X) 12n(a1k5 )Zn(sg)_l

- Zn(sg)_lzn(ajsg ) (Sg)_lzn(aisg ) (Sg)_lzn (aksé()zn (Sg)_l
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+ E(6) @) En @ S ER ) T~ S @2 ()

+Zn(s3) 7 Zn(0] S Zn(3) T Zn(53) T Zn(Ohsy)

- Zn(si()_lzn (aks )En (55 )_1271 ((9iSéX)Zn(S§)_1Zn ((9]8?)2” (Sg)_l

+Xy (SX) %, (31 kSX)Zn (52()—1 Ly (8j5§)2n (Sé()_l

RGO R CISMNC SR CIE SR T R G S

+Zn(SX) 1211(a SX)ZH(SX) lzn(a]ksx)zn(sx)

SMCIRPACIES MEI RS NCICS MO M NCI

In the rest of the proof, we only prove the second assertion because, from the

above expressions of the derivatives 8i2n(sx) 1 82 Zn( X) 1 and 83]k n(s

X)—l

we

can see that the other assertions can be proved 51m11ar1y Notice that we can show

1,97 y(sy) 1,

711]

+2 Z |1;Zn(5}9()_1Zn((gjs)@()mz)Zn(sg)_lzn((aisg)ml )Zn(s}g()_

my,my€{+,~}

<1, Zu(sy) ' £all10; jsg

) (5)9()_11;1

Z |1;1|' Ly (s)g()_lzn((ajsg)mz)zn (Sg)_l X, ((91'55)”11 ) (Sg)_llni

my,mp€l+,~}

)

my,mp€f+,—}

)

my,mp€{+,—}

L) L@ )

Ea(s5) 2 Za(@ ) Zus)

2
) Eu(sX) (@5 )my) 2

2 12
Xy— 24
p Zl’l(se) 217’1 ]R"’

Za(s5)™2 Za(@i5)my ) En () |

so that we conclude the second assertions using Lemma 3 of Chong and Mies
(2025). Therefore, we finish the proof.

Proor or LEMMaA 2: Since we have

1;—{211(5?)_1()(11 - MOln)

~

[Jn(g) —Ho=

under the distribution ]Pgo,

[|/’ln(5) /JO| ]

175,601,

0 1;—{211(5?)_1217(S)Q{O)Zn(sg)_lln
’ (15 Zulsg) 1)

we can show that

e

g+1
2

)_1
TT 2

_ _ 119
(I,IZ”(S)Q() 1211(5)9(0)}:11(5)9() 1111)2

1, Zu(s3) 1,

Q.E.D.

(55)
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OPTIMAL ESTIMATION FOR GENERAL GAUSSIAN PROCESSES

so that the first assertion follows from Lemma 1.

Set Z,, := X;, — uo1y,. First, note that,

1,0 Zu(s) ™ Xy

170, (s%)

_1111 lzaizn(sg)_lzn

179E(s5) ™

l;ll—aizn (535()_1 1,

1y Zu(s¥) 1,

1191'211 (ng()_lln

1, Zu(s5) ' 1,

Jrtin(8) = : ~ (un(®) -
)= ey, O, T ey, o)
1,07 a2 (11 0iTa(sD) 12 | (179 Zn(s) M,

h i jbn (&) =——= X1 T e X1 Tv X1 ~jtn
1, Z(s g) 1, lnzn(sg) 1, lnzn(sg) 1,
1,00 a6 (1702020 | (179, Zn(s5)
_(Pn(g)_yo) - 7
121—271( ?)71111 1;):471(5?)71171 11—1rzn(5§)711n
83 . 1;313]an ()7 Zy 1;812] (s5)7'Zy 1,0k Za(s7) ' 1,
juttn 175, X) 11, 5,60, )| 1756,
1702 (s3) 7 Z0 | (170, Z(5) 11n 170,2u(s5) 12, | (1595 Zn D)
1'%, X) 11 1, Zu(s3) 1, 1, Z0(s3) 1, 1, Za(s3) 1,
) 1;0iZa(s) ™ Z | (159 Za(s) ™ 1 (11 9k Zn(sy) M1, .
L5E0 L )\ o) e, )
5 1,07 Z0(s) 1 (1,0i80(5) 10 ) (17 9k Zn(sY) M
— A 5 —
]‘l"( ) 1;[211(5:) n 1;1I—Zn(s§ )71 n 111271(5?)71171

1757

1’11]

Ln(s9) 1,

1,0 Zn(s3) ' Zs

— Oty
kttn(&) 15,65,

1y Za(s)) ™',

1,9;Za(s5) 1,
1, 2y (ng()_l 1,

|

RDES s T

(56)

) )mik W) (17 T | (17 ) 1,

A BTN 45,601, | e,
(L) 15 0i%(s5) 1y | (1195 Za(sD) 1
17 Za(sY) 1) M )| 16D,

_11;1

Then, we can show that

ES, [l (@[] <27 []Ego

n 1;zrajzn(5§)_11n B
11, 1y Zu(s¥) M1,
I 1,9;%0(s3) " 10 | (17 9jZn(s7)

1, Zu(s3) 1,

1, 9;Zn(sy)"'Z
1, Zu(sgy) 1,

(17 (s (s )AEa(s3) 1)

1y Za(s¥) 1,

q

n

_“0|‘7]

q

E2 [[1n(©)

1) Za(s3) 1,

1, 0:Z,(s
1, Zu(sgy) 1,

lzakzn (ng()_lln
1, Za(s3) 1,

X)711

+ IS [[1n(&)— po']

)

|

1) Zu(s3) ™

- q
1, 9;Zn(sy) 1

(57)
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so that we conclude the second assertion of Lemma 2 using Lemma 1 and the first

assertion of Lemma 2. Moreover, using Lemma 1, we can also show that there exists

;

a positive constant C, such that for any 6 € ® and ¢ > 0,

E!, [

1,92 Zu(s5) ' Zy " q

TZz/]n

1, Za(s3) 1,

1281'271(5?)_1271
1y Za(s¥) 1,

n
o

q
aﬁjun(é)‘ ] <G, [Ego

+Cyn (B3, [[0jn(@)[']+ 3, [ln(©) — ol ]).

G

1797 (s Z, [ ! 7

nvqjk=n

1 Zu(s9) M1,

1,07 Zu(s}) ' Zy

n 1,]

1, Zu(s9) "1,

1,0 %u(s}) ' Zy
1, Zu(s3) 1,

n
S

ijke(l, ... e

Since we can compute the absolute moments of Gaussian random variables by

<C, max |E?
e

+Cyn® max (]Eg[
i,je{l,...p} 0

» ].yn(g)"’] B [0 + Y, [Jua @) - ']

o 11 _sie (91 1 _ 14 1
Eso[lza@zn(sé 'z, ]=2zr(q7)n (1,07 Zn(55) ™ Tl )07 a(55) " )2,

o 11 a1 (91 1 - 14 \1
B, 1535060 2 ]=22F(7)n M09, )T T, EalE) )2,

we can also conclude the third and fourth assertions of Lemma 2 using Lemma 1 and

the other assertion of Lemma 2 similarly. Therefore, the proof is complete. Q.E.D.

Proor or LEMMA 5: Recall that
i 1 T v 1 Za(s3) ™ X
5,(&) = " (X = 1n(E)1n) " En(sg)™ Xn—pn(E)1n), pn(€) = m,
en1(&) 1= 62(&) = 55(E), ena(&) = Ego[ﬁﬁ(é)] —0%(&), en3(8) := G5(&) - Egoléi(é)l, and

acfen,l (&)= —2n! (un(&) — HO)aéﬂn(g)l;qun(S?)_lln - n_l(ﬂn(é) - (UO)Zl;lz—aéZn(S?)_lln/

see (62). In the rest of the proof, we will show the error terms e, ;(£), i =1,2,3 are

negligible uniformly in & € O¢(1) as n — oo.
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OPTIMAL ESTIMATION FOR GENERAL GAUSSIAN PROCESSES 9

First, we evaluate the first term ¢, 1(£). Notice that we can show 1

32 e 1(€) == 21719t (E)Orptn(E) 1T Tuls3) ™ ) = 207 (un(€) — 10) 02 pn (AT Zn(53) 1)
3

=207 (&) = 10)Bittn ()1 9 Zn(s) 1) .
=217 (&) = o)t (E) (1 9iZn(55) ™ 1) = 17 (pn(&) — )1y 9 () ', 5
9% en1 () = =20 (% pn(E)itin(E) + 0jttn( )7 pin(E) 1 E(55) ™' 1, 6

7

— 207101 (E)ittn(E)(A,; e Zn(sy) 1) .

=20 HOkptn()F7 11n (E) + (n(E) = 10} ()L () 1 9
=20 (pn(&) = 10)3; ()L O Zn(55) ™ 1) 10
11
= 21Dy E)itan(E) + (n(E) = o) 11n(E)} (17 9, En(5) 1) .
=207 (&) = 10)Iiptn()(1 5 Zn(sy) ™' 1) 13
=207 Okt E) 14 (E) + (un(E) = )% ()} (1 i Zin(sy) 1) 14
15
=217 (&) = 10)jttn(E) (1 954 T (55) ™ 1) .
— 21 () — 10) g (E) (AT aszn(s X)11,) .
=17 (pn(&) = 10)*1, 0} 1, ()™ L 18
19
Similar calculations to (67) using the Sobolev inequality in Lemma 3 and the Fubini
Theorem yield that for each 4>p—1and ¢ € (0,1), there exists a positive constant
C; such that forany 7,j € {1,2,...,p -1}, ’s
p 23
Ej,| sup 197 en1()| <Cy sup []E (192 enr (@] + ) D, [ ke uaw]} (58) 44
£€O:(1) E€O:(1) k=1
25

Using the above expressions of (91.2].8”,1(5) and 813]. en,1(€), Lemmas 1 and 2 and the 26

Cauchy-Schwarz inequality, the RHS of (58) goes to zero as n — oo so that we 27

conclude ¢, 1(&) is negligible uniformly in & € ©¢(1) as n — oo. 28
Next, we evaluate the second terme;, »(£). Since ]Ego [62(8)] = agn_lTr[Zn(sféo )Zn(sg )74,
we can show 30

02 31
OIS [5(E)] == —Tr[ (55 Zu(sE) ' Za@isE)Za(sE) '], 32
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202
0} E5 12O =—L el Zu(s5) En(}) ™ Zn(@)50) (5™ En(di7) En(s7) ']

2
= T ()T ) @

where we used the facts that Tr[A] = Tr[AT] and Tr[AB] = Tr[BA] hold for any
square matrices A and B in the last inequality, so that, using the expressions of
9;0%(&) and 812,].02(5) in Lemma 5 and Lemma 4, we conclude die; 2(£) and 81.2’].8”,2(5)
vanish uniformly on O¢(t) as n — oo.

Finally, we consider the third term e, 3(£). The Sobolev inequality in Lemma 3

yields that for any ¢ € (0,1) and 2q > p -1, there exists a positive constant Cp; such
that forany i,j,k=1,...,p-1,

p-1
E3 | sup 1d;e,3(8)| < Cay sup [ [19iena(©PT]+ Y B 192 en (e m] (59)
£€0(1) £€0(1) =1
p-1
Ej | sup 102,e,5(E)P | < Coy sup B [102,ena(EP]+ Y ES [192 43P |- (60)
EEG);’(L) E€O¢(1) j=1

Notice that we can show

A3E) =~ (=) Za(sH) E @i (% = proTa)

P26 = 2 (= pla) " Za(sH) Ea @i ) 2O (% = o)
(X 1) E D) @ ST (X o),

9} 4n(8) = —% (X = pio1n) " Zn(s3) ™ Zn(Oksy) Znls) T Ln@i8 ) En(s3) ™ En(955) En(s3) ™ (X — ptoLy)
+ 2 (X = 1) () (@) 6T B0 ) (X = o)
- % (X = on) " Zn(sF) ™ Zn(@5) T (7)™ En(@rs )T (55) ™ Lu(@j57) Zun(s) ™ (X = proLn)
+2 0= o) Za(s0) E @R I DT 06 - o)
- % (X = on) " Zn(s) ™ Zn(@i8) T (53) T En(@j55) En(s7) ™ Zn(9r57) Zn(s) ™ (X = proLn)
3 0= 1) () @I Tn 1) E @RS (X = o)

(1) ) 202 ) ) (X = )

1
= = p0n) " Za(5) 2 @2 () Ea @i E ) T (X = o),

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

OPTIMAL ESTIMATION FOR GENERAL GAUSSIAN PROCESSES 11

which implies

i,j7 9

2
O} 53] = B [0:3(6)), 0% S [53(6)] = B} [0%,63(O)] and 97 B3 [G3(9)] = B} [07, 53O

ik, i,jkon

Then we can show that the quantities in the RHS of the inequalities (59) and (60)
vanish as n — oo using Lemma 4 similarly to the proof of (64) in the proof of (30).

Therefore, we finish the proof of Lemma 5. Q.E.D.

B.3. Proof of (30)
Fix t € (0,1). Recall that

1
6u(€) 1= 03(&, 1) = ~ (X = 101) " Znls) ™ (X = o).

We decompose the error 62(&) — 02(&) into the following three terms:

en1(€) 1= 03(8) = 53(8), en2(E) = BY [67(E)] = 0°(€), and e,3() := 5;(8) — B [53(E)].

In the rest of the proof, we will show that the error terms e, ;(£), i = 1,2,3, vanish

uniformly on O (1) as n — oo.

We first consider ¢, 1(&). Note that the error term ¢, 1 (&) is written as

en,1(€) = =217 (&) = o)1y Zn(s3) ™ X = o) + 1 (n(E) — p0) 1y Zn(s) "1,
= =17 (un(&) = o)1 Zn(53) ' 1, (61)
so that, by the chain rule, its first-order derivatives with respect to £ is
gen1(8) = =20 (1n(E) = 10} i (E)Ly T (53) ™ L =1~ (1 (&) = 10)° 1 O Zn(s) ™ 1 (62)

Moreover, the Sobolev inequality in Lemma 3 yields that for any ¢ € (0,1) and
2q > p—1, there exists a positive constant Cp; such that

p-1
Ef | sup len1(E)P7| < Cyy sup [IES [len1 @R+ Y S [19jen 1] |- (63)
E€O;(1) E€O¢(1) =1

Then, using the above expressions of e, 1(£) and dge, 1(£), Lemmas 1 and 2 and

the Cauchy-Schwarz inequality, we can show that the quantity in the RHS of the
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inequality (63) converges to zero as n — oo. Hence, we conclude e, 1(£) vanishes
uniformly on O () as n — oo.

Next, we consider e;»(&). Notice that we have the equality ]Ego[ﬁn(é)] =
agn_lTr[Zn(sféo )Zn(sg)_l] so that, using Lemma 4, we conclude e, »(&) vanishes uni-
formly on ©O(1) as n — oo.

Finally, we consider e, 3(¢). The Sobolev inequality in Lemma 3 yields that for
any ¢ € (0,1) and 2q > p —1, there exists a positive constant Cy; such that

Ej | sup len3(&)

E€O:(1)

p-1
< Cy sup [E% [lens(@PT]+ Y EL [19jens@P]|.  (64)
E€O:(1) =1

Then we can show that the quantity in the RHS of the inequality (64) vanishes as
n — oo using Lemma 4 because we know that 1) the moments lEgo [|en,3(§)|2”l] and
lEgO[Wjen,g(é)lzq ] can be expressed by linear combinations of cumulants up to the
order 2q using the Leonov-Shiryaev formula, 2) ¢,,3(£) and dje;, 3(£) are centralized
quadratic forms of Gaussian vector so that for each r > 2, its rth order cumulants
can be expressed by cum,[e;, 3(&)] = n_rchr[(Zn(sg)_lzn(s?O ))'Tand cum,[dje; 3(E)] =
n"chr[(Zn(sé()_lZn(o“'gsé()zn(sfg)_lZn(sif0 ))"] for some positive constant c,, and 3) the
first order cumulants of e, 3(¢) and d e, 5(¢) are equal to zero. Therefore, we conclude

en3(&) also vanishes uniformly on ©;(t) as n — oo. This completes the proof of (30).

B.4. Proof of (31)

Using the Taylor theorem, we can write

1 _
log 5,(&) —logo*(&) = (57(£) —0*(£)) fo (0%(&) +u(32(&) - %(8))) du
so that we obtain

1o 73(6) ~log () < 33(6) - 2(@)|o2(6) - 136 - @)
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Set 02(£.(1)) := infzeo, () 02(&) > 0 so that we can take €7 € (0,02(E.(1))). Then, for any

€ >0, we can show the inequality

ngo sup |10g5%(€)—10g62(c§)| > €
EeO¢(1)

which concludes (31) using (30).

sup

<IP§
So
E€O¢(1)

n
+1P‘9

sup |52(&
EEO(1)

152(E) — a*(E)] > ell

B.5. Proof of Proposition 1

)= (E) > (0%(&.(1) —61)6},

Under Assumption 3, Theorems 4.1 and 5.2 in Adenstedt (1974) yield the con-

vergence

n%(l—ax(éo))(#n(ég) — o) = N0

in law under the distribution ]P’go as n — oo for any interior point 9y of ®. Thus it

suffices to prove that

2nagex(Eo)T(1 - ax(&o))

"B(1-ax(&0)/2,1-ax(&0)/2)

30D (4 (€) — pn(€0)) = opy (1) as = oo.

(65)

Notice that the sequence { V(& — &) hnen is stochastically bounded from the as-

sumption. Set En = \/ﬁ(én —&o) for n € N. Then, using the Cauchy-Schwarz in-

equality and the Chebyshev inequality, for any € > 0 and M > 0, we obtain

P [

<P [Enllgor = M]+PY

<TP§ [l = M]+e "]

na=ax@o(y, (Z,) - yn(éo))‘ > 8]

sup

° E€B, _1/2)1(0)

sup ‘n%(l_a’((go»(#n(é) - (Un(éo))' 2 5}
¢€B, —1/2),(€0)

|n%(1‘“X(‘50))(Hn(5) B ‘un(&)))‘q]
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so that (65) follows once we have proved that forany M >0and g >p-1,

Eg

S| sup A0, (@) - (o)
E€B, _1/2)4(&0)

=0(1) asn — oo.

(66)

Notice that Lemma 3 and the Fubini theorem yield that for any g > p—1, it holds

Eg

< Coa(nPM)TE]

p-1 7
L(1-ax(&)) 3. H
2 .
So [Z ‘ " Ijttn() LY(B,-1/2,(€0))

O sup ‘ 1~ ax(éo))(y (&)— ‘Un(EO))‘
E€B, —1/2;,(%0)

p-1

< Cop(n™2M1

=1 E€B, —1/2;,(¢0)

j=1

sup ]EYSZO [ n%(l—ax(éo)wj'yn(é)‘q],

and Lemma 2 gives the inequality

p-

>_x

E} [|n%(1—ax(éo))3jyn(g)|q]

j=1 €€B, 1/2M(<§0)

sup

n%(l—ax(éo))(lgzn(sg)—l1n)—%n%){o(é)ﬂ"

j=1 E€B, —1/2;,(¢0)

Since we can show the inequality

1, Z(s3) "1, =

HCSRIMCSEIME Sues B

1112
I MESEINESE:

90

2
R"

o op

(67)

(68)

which follows from the definition of the operator norm, we can further evaluate

26 the last quantity in the inequality (68) up to a constant multiplication by
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32

|
NI

=

j

I
—_

NI-:.

1

sup n%(1—ax(éo))(gzn(sg)—lln)—%n%m(é)ﬂ

E€B, _1/2,,(¢0)

p-1

j=1 €€B,, 1/2M(£o)

n%(l—ax(éo))(lgzn(sg )711,) Fn a0
0
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where we use Assumption 1 and Lemma 3 of Chong and Mies (2025) in the last
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inequality. Then we conclude (66) using Theorems 4.1 and 5.2 in Adenstedt (1974).

Therefore, the proof is complete.

B.6. Proof of (51)

Notice that we have R, (9,9’) = diag(lp,n_%{“X(‘SJ“E’)_“X(‘E)}) forany & =(&,0’,1)7,

and

19w (9)llop = maxfn™2, 5~ 217N = =3 minL1-ax(@),

so that we conclude (51) using the continuous differentiability of ax(¢).

B.7. Proof of (52)

Recall that 02 (&, HE % X - /,tln)T Zln(sé()_1 (Xn —p1,) and 52(8) = 02 (&, o). Using
the expressions of the score function in (46), the second-order derivatives of the
log-likelihood function ¢, (3) are given by

Pln(8) = 525 (202(E, 1) — ST [L(s) " Bn(@P55) ) + 3 Tr[S(5) ! n(Pese)Tn(se) ™ Zu@esi) ],

:05ln(9) = e0e () = 5I:02(E, 1), I2Lu(9) = — 2 (30%(&, 1) - 0?),
aéaygn(s) = auaéfn(s) = _Ulzl;lraézn@?rl (Xn— uly), aifn(S) = _%(111—271(5?)711”)/
808“&1(\9) = a‘uao{n(s) = _(%1;{211(5?)71 (X — Hln) .

(69)

Then we can show (52) similarly to the proof of Lemma 2.6 in Cohen et al. (2013)

and Lemma 3.4 in Kawai (2013) using Lemma 4. So we omit the detailed proofs.

B.8. Proof of (53)

Using the Taylor theorem, it suffices to prove that

2 (ri+r2)=3(1-ax(©))rs sup aﬁi 079 Ln (9 + Dy (S)u)| = opr(1) asn — oo

u€lUy ()

(70)

forany ¢>0,i=1,...,p—1 and ry,rp,13 € {1,2,3} with r{ + p +r3 = 3. Using the
expressions of the second order derivatives of £,,(9) in (69), we get the expressions
of the third-order derivatives of ¢,(8) by

3
PLu(9)

n
Ec?éa

2
n

& p)- %Tr [Zn(se) " Zn(@2s0) | + %Tr [Z0(52) ™ Sn@ese) Tnse) " (@25 |

-

N
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16

+;9 Tr[Z (s£)” 13,0 5g)Ln(se)” Iy (Brsc)]
and
n 1 _
9295 n(9) =—Sa§o§(g, W), 920, 6(9) = ——21,1 IrLn(sH) ™ (X — 1),

9205 ln(9) = —0—950n(5,y) 950,uln(9) = (1TZn(SX) '1,),
1
62

2 _ 2n
05050 n(9) =~ 51;{ OeTn(s) ™ (X — 1), 934u(9) = = (602(&, 1)~ 0°), P2tu(d)

2

F7066u(9) = = = (1,9 Zn(s7) My), aﬁaafnw):§<1Zagzn(s§)—11n),

so that (70) follows from similar arguments to the proofs of Lemma 2.7 in Cohen
et al. (2013) using Lemmas 1 and 4 as well as Theorems 4.1 and 5.2 in Adenstedt
(1974). This completes the proof of Theorem 3 as well as that of (53).

B.9. Alternative expression of MLE

In this section, we derive an easily tractable alternative expression of the log-
likelihood function ¢, (8), which is useful to quickly compute the exact MLE. De-
note by ps(x1,...,x,) the Gaussian likelihood function of the distribution Py and
by ps(xjlx1,...,xj-1) the conditional likelihood function of the distribution of X}g

conditional on the j-dimensional vector (X‘9,X‘29 L. .,X}.g_l). By expressing the likeli-

hood function pg(x1,...,x,) " of the joint distribution as a product of the conditional
likelihood functions pg(xjlx1,...,xj-1) and using the closed-form expression of their
conditional Gaussian likelihood functions py(x|xy,...,xj-1), the log-likelihood func-
tion ¢, (8) can be expressed by

n 1 n TI ‘9))
€4(8) =logps(X1, ..., Xn) = 1ogp9(xl)Hlogps(xj|xl,...,xj_1) = —Engv] 9)—-2 /U (é ,
]

=2 =1

where 11(9) := u, v1(0) == Var[Xf] =02, 1ni(9):= E[Xf|x]-_1] and v;(0) := Var[X}?lXj_l]

tfor j €{2,3,...,n}, which can be written as

i—1

nj(9) = qujxax] i+wi(©p and v,(0) = yXOIT (1-¢1()?),

=Qp
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where w1(&) := 1, wj(§) := (1~ L2 ¢;:(6)), and

P11(8) =5 (1)/75(0),$;i(&) =

forief{l,...,j—1}and j€{2,...,n}. Here, ¢;(<) are partial linear regression coeffi-

cients. Notice that the above expression of £,,(9) can be rewritten as

1 v Z©)-wi©p?
2Z 0;(&)

1 n
£u(9) = —gloggz -5 Zlogﬁj(é)
P p=

using the notation (&) := a‘zv]-(Q) and Z1(&) ==Xy, Zj(&) == X — Z{;ll ¢;i(&)X-; for

j€1{2,3,...,n}. Then we can see that the MLE also satisfies the estimating equations

[ wi?) & wi©) (Z(&) —wi(E)u)?
g ‘[; %)] ]Z 5,9 i) and o - 59

j=1

for any (&, 0, u) € ©¢ X (0,00) X R. Therefore, from the uniqueness of the maximum

values of 0 and 1 on (0,00) and R respectively, we obtain the equalities

— j(&) 0;(&) 7,(&)

j=1 J'=1

n a2\ 7. )
un@):[zwfﬁ] 3 9O 6y and e = Ly OO
]' .

Notice that the coefficients ¢;;(¢) and the corresponding conditional variance 7;(&)
can be calculated by the Durbin-Lenvinson recursive algorithm (Brockwell and
Davis, 1987, Chapter 5).

B.10. An Financial Application

Fractional models have been employed to model realized volatility (RV) (An-
dersen et al., 2003, Bennedsen et al., 2022, 2024) and trading volume (Shi et al.,
2024b, Wang et al., 2024). A recently introduced model is the fOU process (Gatheral
et al., 2018, Wang et al., 2023). For instance, Wang et al. (2023) demonstrate that
tOU outperforms traditional fractional models such as ARFIMA(1,d,0) and fBm. In
this section, we demonstrate that our exact MLE further enhances the forecasting

accuracy of fOU. Compared to the existing literature, we also incorporate the CoF

j-1
Ve =Y 61y (J'—i)] 01(0) ™, 1(€) = b 1,(E) = b} (E)Pj1,j-i(E)
i=1
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method from Wang et al. (2023). However, since the CoF method is less efficient
than the AWML approach proposed by Shi et al. (2024a) and Wang et al. (2024),
we anticipate that forecasting accuracy will rank as follows: MLE2 (exact MLE),
followed by MLE3 (plug-in MLE), and then CoF.

We apply our method to Dow Jones 30 (DJ30) stocks. The daily realized volatility
of the DJ30 stocks, spanning September 15, 2012, to August 28, 2021, is obtained
from Risk Lab of Dacheng Xiu.” We assume that the log RV follows an fOU process
and set A = 1/250 to reflect 250 trading days per year. A four-year rolling window
is employed to fit the model, estimate the parameters, and generate h-day-ahead
forecasts of RV. The results, presented in Tables V-VII, align with our expectations.
Both MLE approaches outperform the CoF method, with improvements ranging
from approximately 2% to 15%. The exact MLE slightly enhances the performance
of the plug-in MLE. It is not surprising that we find the plug-in MLE exhibits good

finite-sample performance compared to our exact MLE.

Isee https://dachxiu.chicagobooth.edu/#risklab.
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19

RMSE OF THE ALTERNATIVE ESTIMATION METHODS FOR H-DAY-AHEAD FORECASTS FOR REALIZED VOLATILITY

(RV) WITH A FOUR-YEAR ROLLING WINDOW BETWEEN SEPTEMBER 15, 2012 aND AucusT 28, 2021.

AAPL

MLE2
MLE3
CoF

0.0611
0.0612
0.0639

0.0715
0.0716
0.0779

0.0782
0.0783
0.0874

0.0836
0.0836
0.0950

0.0877
0.0878
0.1007

ALD

MLE2
MLE3
CoF

0.0543
0.0545
0.0555

0.0635
0.0638
0.0661

0.0712
0.0716
0.0749

0.0770
0.0774
0.0813

0.0816
0.0820
0.0863

AMGN

MLE2
MLE3
CoF

0.0691
0.0692
0.0703

0.0770
0.0771
0.0796

0.0819
0.0820
0.0853

0.0871
0.0872
0.0911

0.0909
0.0909
0.0954

AXP

MLE2
MLE3
CoF

0.0577
0.0580
0.0605

0.0693
0.0697
0.0757

0.0774
0.0778
0.0861

0.0842
0.0847
0.0944

0.0895
0.0900
0.1006

BA

MLE2
MLE3
CoF

0.0922
0.0925
0.0965

0.1081
0.1084
0.1192

0.1190
0.1194
0.1352

0.1287
0.1292
0.1483

0.1371
0.1376
0.1587

BEL

MLE2
MLE3
CoF

0.0485
0.0486
0.0497

0.0560
0.0561
0.0587

0.0616
0.0618
0.0654

0.0665
0.0667
0.0708

0.0706
0.0707
0.0750

CAT

MLE2
MLE3
CoF

0.0595
0.0596
0.0594

0.0675
0.0677
0.0687

0.0733
0.0735
0.0754

0.0783
0.0785
0.0813

0.0822
0.0824
0.0858

CHV

MLE2
MLE3
CoF

0.0525
0.0527
0.0532

0.0638
0.0642
0.0650

0.0725
0.0730
0.0742

0.0789
0.0795
0.0810

0.0847
0.0853
0.0868

CRM

MLE2
MLE3
CoF

0.0630
0.0631
0.0663

0.0739
0.0739
0.0817

0.0807
0.0808
0.0927

0.0861
0.0861
0.1015

0.0905
0.0905
0.1086

CSCO

MLE2
MLE3
CoF

0.0537
0.0538
0.0554

0.0635
0.0637
0.0675

0.0714
0.0715
0.0771

0.0774
0.0775
0.0842

0.0821
0.0822
0.0896
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RMSE OF THE ALTERNATIVE ESTIMATION METHODS FOR H-DAY-AHEAD FORECASTS FOR REALIZED VOLATILITY

(RV) WITH FOUR-YEAR ROLLING WINDOW BETWEEN SEPTEMBER 15, 2012 AND AucusT 28, 2021.

TABLE VI

DIS

MLE2
MLE3
CoF

0.0556
0.0558
0.0579

0.0657
0.0660
0.0705

0.0739
0.0743
0.0804

0.0801
0.0805
0.0876

0.0853
0.0857
0.0934

GS

MLE2
MLE3
CoF

0.0513
0.0513
0.0526

0.0630
0.0631
0.0660

0.0709
0.0710
0.0751

0.0772
0.0773
0.0821

0.0821
0.0822
0.0873

HD

MLE2
MLE3
CoF

0.0538
0.0540
0.0549

0.0628
0.0630
0.0656

0.0695
0.0697
0.0736

0.0754
0.0757
0.0804

0.0804
0.0807
0.0859

IBM

MLE2
MLE3
CoF

0.0499
0.0500
0.0519

0.0583
0.0585
0.0632

0.0642
0.0644
0.0713

0.0691
0.0694
0.0777

0.0732
0.0734
0.0826

INTC

MLE2
MLE3
CoF

0.0634
0.0635
0.0648

0.0742
0.0744
0.0777

0.0823
0.0824
0.0872

0.0884
0.0885
0.0943

0.0930
0.0931
0.0994

INJ

MLE2
MLE3
CoF

0.0533
0.0534
0.0546

0.0605
0.0606
0.0620

0.0665
0.0667
0.0680

0.0714
0.0716
0.0729

0.0751
0.0753
0.0765

JPM

MLE2
MLE3
CoF

0.0519
0.0521
0.0532

0.0639
0.0641
0.0668

0.0730
0.0732
0.0768

0.0803
0.0806
0.0846

0.0858
0.0861
0.0903

KO

MLE2
MLE3
CoF

0.0444
0.0446
0.0458

0.0529
0.0531
0.0558

0.0597
0.0600
0.0637

0.0648
0.0650
0.0693

0.0689
0.0691
0.0738

MCD

MLE2
MLE3
CoF

0.0485
0.0488
0.0509

0.0583
0.0586
0.0629

0.0662
0.0666
0.0722

0.0725
0.0728
0.0791

0.0776
0.0779
0.0845

MMM

MLE2
MLE3
CoF

0.0492
0.0493
0.0496

0.0571
0.0572
0.0592

0.0628
0.0629
0.0664

0.0675
0.0677
0.0723

0.0709
0.0711
0.0766
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TABLE VII
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RMSE OF THE ALTERNATIVE ESTIMATION METHODS FOR H-DAY-AHEAD FORECASTS FOR REALIZED VOLATILITY

(RV) WITH FOUR-YEAR ROLLING WINDOW BETWEEN SEPTEMBER 15, 2012 AND AucusT 28, 2021.

MRK

MLE2
MLE3
CoF

0.0565
0.0566
0.0584

0.0648
0.0650
0.0694

0.0714
0.0716
0.0776

0.0760
0.0762
0.0830

0.0797
0.0799
0.0871

MSFT

MLE2
MLE3
CoF

0.0527
0.0528
0.0531

0.0631
0.0633
0.0646

0.0711
0.0713
0.0737

0.0770
0.0771
0.0802

0.0819
0.0821
0.0857

NIKE

MLE2
MLE3
CoF

0.0565
0.0566
0.0582

0.0671
0.0673
0.0717

0.0746
0.0749
0.0810

0.0808
0.0811
0.0882

0.0854
0.0857
0.0932

PG

MLE2
MLE3
CoF

0.0547
0.0549
0.0560

0.0649
0.0651
0.0673

0.0737
0.0740
0.0769

0.0806
0.0809
0.0841

0.0861
0.0864
0.0897

SPC

MLE2
MLE3
CoF

0.0546
0.0548
0.0559

0.0643
0.0645
0.0665

0.0715
0.0718
0.0743

0.0770
0.0774
0.0803

0.0818
0.0822
0.0853

UNH

MLE2
MLE3
CoF

0.0570
0.0571
0.0577

0.0665
0.0667
0.0682

0.0728
0.0731
0.0752

0.0786
0.0790
0.0816

0.0834
0.0838
0.0869

MLE2
MLE3
CoF

0.0468
0.0470
0.0476

0.0570
0.0572
0.0586

0.0648
0.0651
0.0669

0.0709
0.0712
0.0733

0.0760
0.0763
0.0786

WAG

MLE2
MLE3
CoF

0.0727
0.0727
0.0757

0.0826
0.0827
0.0893

0.0886
0.0887
0.0980

0.0937
0.0938
0.1047

0.0983
0.0984
0.1104

WMT

MLE2
MLE3
CoF

0.0500
0.0502
0.0518

0.0580
0.0582
0.0623

0.0635
0.0637
0.0692

0.0677
0.0680
0.0742

0.0716
0.0718
0.0783

XOM

MLE2
MLE3
CoF

0.0520
0.0522
0.0534

0.0619
0.0622
0.0655

0.0698
0.0702
0.0752

0.0763
0.0768
0.0832

0.0810
0.0816
0.0891
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B.11. Robustness check: p # 0

We also carry out additional simulation studies to compare the performance of
alternative methods for estimating the ARFIMA(0,d,0) model. The following two
tables report the bias and standard error of three ML estimates. Again, the exact
MLE of mu outperforms the plug-in MLE, especially when d is very negative.
However, the exact MLEs of d and ¢ perform similarly to the plug-in MLEs.
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TABLE VIII
Bias AND Stp OF ALTERNATIVE MLEs ror ARFIMA(0,d,0): y=1aNp o =
| MLEI MLE2 MLE3 | MLEl MLE2 MLE3 | MLEI MLE2 MLE3
=250
\ d=-040 \ d=-0.30 4=-0.20
¢ Bias | 00000 00002 00000 | 0.0000 00007 0.0004 | 0.0000 0.0003  0.0000
Std | 0.0000 0009 00115 | 0.0000 00153 0.0165 | 0.0000 0.0235  0.0241
d Bias | -0.0021 -0.0135 -0.0074 | -0.0045 -0.0175 -0.0140 | -0.0056 -0.0185 -0.0170
Std | 0.0488 00502 0.0494 | 0.0507 0.0534 0.0520 | 0.0519 0.0545 0.0538
o Bias | -0.0029 -0.0051 -0.0042 | -0.0024 -0.0047 -0.0043 | -0.0022 -0.0044 -0.0042
Std | 0.0445 00444 00444 | 0.0418 00420 0.0420 | 0.0454 0.0453 0.0453
4=-0.10 4=0.00 4=0.10
¢ Bias | 00000 0.0004 00003 | 0.0000 -0.0006 -0.0006 | 0.0000 -0.0028 -0.0027
Std | 0.0000 0.0380 0.0384 | 0.0000 00617 0.0616 | 0.0000 0.1082 0.1086
d Bias | -0.0044 -0.0174 -0.0168 | -0.0056 -0.0194 -0.0193 | -0.0045 -0.0193 -0.0193
Std | 0.0525 00548 00544 | 0.0498 00531 0.0529 | 0.0495 0.0528 0.0528
o Bias | -0.0044 -0.0065 -0.0065 | -0.0013 -0.0035 -0.0035 | -0.0010 -0.0033 -0.0033
Std | 0.0440 00441 00441 | 0.0449 0.0450 0.0450 | 0.0453 0.0451  0.0451
4=020 d=030 d=040
¢ Bias | 0.0000 00029 00035 | 0.0000 -0.0248 -0.0269 | 0.0000 0.0334 0.0359
Std | 0.0000 01948 0.1959 | 0.0000 03532 03551 | 0.0000 0.6428  0.6440
4 Bias | -0.0031 -0.0193 -0.0193 | -0.0083 -0.0255 -0.0254 | -0.0135 -0.0293 -0.0291
Std | 0.0504 00536 00537 | 0.0492 00532 0.0532 | 0.0425 0.0474 0.0474
o Bias | -0.0045 -0.0067 -0.0067 | -0.0050 -0.0071 -0.0071 | -0.0032 -0.0048 -0.0048
Std | 0.0443 00445 0.0445 | 0.0437 00438 0.0438 | 0.0432 0.0433 0.0433
1=1000
d=-0.40 d=-0.30 d=-0.20
¢ Bias | 0.0000 -0.0000 -0.0001 | 0.0000 0.0001 0.0003 | 0.0000 0.0004 0.0004
Std | 0.0000 0.0029 0.0035 | 0.0000 0.0051 0.0054 | 0.0000 0.0091  0.0093
4 Bias | -0.0014 -0.0052 -0.0029 | -0.0001 -0.0040 -0.0030 | -0.0010 -0.0048 -0.0045
Std | 00249 00253 00252 | 0.0249 0.0254 0.0252 | 0.0246 0.0249  0.0248
o Bias | -0.0008 -0.0013 -0.0011 | -0.0016 -0.0021 -0.0020 | 0.0000 -0.0005 -0.0005
Std | 00222 00222 00223 | 0.0222 00222 00222 | 00220 0.0221 0.0221
d=-0.10 d=0.00 d=0.10
¢ Bias | 0.0000 00001 00001 | 0.0000 -0.0009 -0.0010 | 0.0000 -0.0026 -0.0025
Std | 0.0000 00164 00164 | 0.0000 00311 0.0311 | 0.0000 0.0620 0.0622
d  Bias | -0.0017 -0.0055 -0.0054 | -0.0027 -0.0068 -0.0068 | -0.0011 -0.0055 -0.0055
Std | 00240 00246 0.0245 | 0.0241 0.0248 0.0248 | 0.0236 0.0243  0.0243
o Bias | -0.0006 -0.0011 -0.0011 | -0.0006 -0.0011 -0.0011 | -0.0009 -0.0014 -0.0014
Std | 00226 00226 00226 | 0.0229 00229 0.0229 | 00227 0.0227 0.0227
d=020 d=030 d=040
¢ Bias | 0.0000 -0.0092 -0.0098 | 0.0000 00058 0.0047 | 0.0000 -0.0328 -0.0328
Std | 00000 01196 01204 | 0.0000 02468 02505 | 0.0000 05437  0.5466
4 Bias | -0.0023 -0.0067 -0.0067 | -0.0014 -0.0056 -0.0056 | -0.0044 -0.0087 -0.0087
Std | 0.0256 00264 00264 | 0.0244 00251 0.0251 | 0.0226 0.0236 0.0236
o Bias | -0.0001 -0.0006 -0.0006 | -0.0013 -0.0017 -0.0017 | -0.0011 -0.0014 -0.0014
Std | 00234 00234 00234 | 00215 00215 0.0215 | 0.0224 0.0224 0.0224
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Bias, STp AND RMSE oF ALTERNATIVE MLEs rForR ARFIMA(0,d,0): p=—-1aNp o =1.

TABLE IX

| MLEI MLE2 MLE3 | MLEl MLE2 MLE3 | MLEI MLE2 MLE3
=250
\ d=-040 \ d=-030 \ d=-020
@ Bias | 0.0000 -0.0005 -0.0006 | 0.0000 0.0007 0.0007 | 0.0000 0.0003  0.0003
Std | 0.0000 00097 00118 | 0.0000 00150 0.0159 | 0.0000 0.0241  0.0249
d Bias | -0.0055 -0.0170 -0.0109 | -0.0044 -0.0166 -0.0134 | -0.0046 -0.0178 -0.0163
Std | 0.0500 00518 00512 | 0.0538 00558 0.0546 | 0.0529 0.0555 0.0548
o Bias | -0.0031 -0.0054 -0.0045 | -0.0032 -0.0054 -0.0050 | -0.0008 -0.0031 -0.0029
Std | 0.0452 00451 00452 | 0.0462 0.0460 0.0460 | 0.0439 0.0440  0.0440
d=-0.10 d=0.00 d=0.10
¢ Bias | 00000 00013 00012 | 0.0000 -0.0017 -0.0016 | 0.0000 0.0030  0.0028
Std | 0.0000 00395 00397 | 0.0000 00623 0.0622 | 0.0000 0.1116 0.1120
d Bias | -0.0006 -0.0148 -0.0143 | -0.0052 -0.0192 -0.0191 | -0.0039 -0.0197 -0.0198
Std | 0.0518 00557 00553 | 0.0485 00525 0.0523 | 0.0501 0.0538 0.0538
o Bias | -0.0014 -0.0038 -0.0037 | -0.0006 -0.0029 -0.0029 | -0.0027 -0.0051 -0.0051
Std | 0.0436 00436 0.0436 | 0.0446 00447 0.0447 | 0.0454 0.0453  0.0453
d=0.20 d=0.30 d=040
¢ Bias | 0.0000 00066 00063 | 0.0000 -0.0070 -0.0048 | 0.0000 00471 0.0471
Std | 0.0000 01900 0.1906 | 0.0000 03520 03565 | 0.0000 0.6664 0.6697
d Bias | -0.0047 -0.0213 -0.0213 | 0.0062 -0.0235 -0.0234 | -0.0129 -0.0297 -0.0295
Std | 0.0484 00535 00536 | 0.0453 00498 0.0498 | 0.0415 0.0464 0.0464
o Bias | -0.0028 -0.0051 -0.0051 | -0.0044 -0.0065 -0.0065 | -0.0021 -0.0038 -0.0037
Std | 0.0444 00446 00446 | 0.0446 00446 0.0446 | 0.0446 0.0446  0.0446
n=1000
d=-040 d=-030 d=-020
¢ Bias | 00000 -0.0000 0.0000 | 0.0000 -0.0002 -0.0002 | 0.0000 -0.0003 -0.0003
Std | 0.0000 00028 00034 | 0.0000 00051 0.0055 | 0.0000 0.0090 0.0093
d Bias | -0.0036 -0.0074 -0.0052 | -0.0019 -0.0058 -0.0048 | -0.0011 -0.0048 -0.0045
Std | 0.0263 00270 00266 | 0.0251 00256 00254 | 0.0249 00252 0.0251
o Bias | 0.0001 -0.0005 -0.0002 | 0.0009 -0.0015 -0.0014 | -0.0007 -0.0012 -0.0011
Std | 0.0232 00232 00232 | 00224 00224 0.0224 | 00223 00223 00223
d=-0.10 d=0.00 4=0.10
¢ Bias | 00000 00007 00007 | 0.0000 -0.0023 -0.0023 | 0.0000 -0.0021 -0.0020
Std | 0.0000 00169 00169 | 0.0000 00314 0.0314 | 0.0000 0.0608 0.0608
d Bias | -0.0010 -0.0051 -0.0050 | -0.0030 -0.0071 -0.0071 | -0.0016 -0.0058 -0.0058
Std | 0.0252 00256 00256 | 0.0237 00243 0.0243 | 0.0252 0.0260 0.0260
o Bias | -0.0005 -0.0011 -0.0011 | -0.0002 -0.0007 -0.0007 | -0.0019 -0.0024 -0.0024
Std | 0.0219 00219 00219 | 00221 00220 0.0220 | 0.0230 0.0229  0.0229
d=0.20 d=0.30 d=040
¢ Bias | 00000 -0.0075 -0.0081 | 0.0000 -0.0035 -0.0022 | 0.0000 0.0050  0.0069
Std | 0.0000 01234 01242 | 0.0000 02510 02534 | 0.0000 05516 0.5593
d Bias | -0.0005 -0.0050 -0.0050 | -0.0027 -0.0073 -0.0072 | -0.0034 -0.0077 -0.0077
Std | 0.0244 00251 00251 | 0.0243 00253 0.0253 | 0.0232 0.0243 0.0243
o Bias | -0.0012 -0.0017 -0.0017 | -0.0004 -0.0008 -0.0008 | 0.0001 -0.0002 -0.0002
Std | 0.0217 00217 00217 | 00227 00227 0.0227 | 00216 0.0216 0.0216
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