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Abstract

This paper first derives two analytic formulae for the autocovariance of the dis-
cretely sampled fractional Ornstein-Uhlenbeck (fOU) process. Utilizing the analytic
formulae, two main applications are demonstrated: (i) investigation of the accuracy
of the likelihood approximation by the Whittle method; (ii) the optimal forecasts
with fOU based on discretely sampled data. The finite sample performance of the
Whittle method and the derived analytic formula motivate us to introduce a feasible
exact maximum likelihood (ML) method to estimate the fOU process. The long-span
asymptotic theory of the ML estimator is established, where the convergence rate is
a smooth function of the Hurst parameter (i.e., H) and the limiting distribution is
always Gaussian, facilitating statistical inference. The asymptotic theory is different
from that of some existing estimators studied in the literature, which are discontin-
uous at H = 3/4 and involve non-standard limiting distributions. The simulation
results indicate that the ML method provides more accurate parameter estimates
than all the existing methods, and the proposed optimal forecast formula offers a
more precise forecast than the existing formula. The fOU process is applied to fit
daily realized volatility (RV) and daily trading volume series. When forecasting RVs,
it is found that the forecasts generated using the optimal forecast formula together
with the ML estimates outperform those generated from all possible combinations
of alternative estimation methods and alternative forecast formula.
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1 Introduction

Estimating continuous-time diffusion models driven by the standard Brownian motion

(Bm) with discretely sampled data has garnered considerable attention in the literature.

The Markov property, inherent to Bm-driven diffusions, ensures that the log-likelihood

function can be obtained as the sum of log transition probability densities. When the

transition probability density has a closed-form expression, the likelihood function can be

easily computed, enabling exact maximum likelihood (ML) estimation. If the transition

probability density is not available in closed form, Aı̈t-Sahalia (1999, 2002) provides a

highly accurate method to approximate the transition probability density, facilitating

the ML estimation. See, for example, Phillips and Yu (2009) for a literature review.

In the case where the drift function is affine and the diffusion function is constant,

the diffusion model becomes the classical Ornstein-Uhlenbeck (OU) process. In this

case, both the transition probability density and the ML estimator have closed-form

expressions. The fractional OU (fOU) process studied in this paper is an extension of

the OU process by replacing the standard Bm with a fractional Brownian motion (fBm).

The standard Bm has independent increments. On the other hand, the increments of fBm

can have a vibrant correlation structure. The fOU process has found wide applications

in practice, including modeling and forecasting volatility and trading volume of financial

assets (Gatheral et al., 2018; Fukasawa et al., 2022; Wang et al., 2023; Bolko et al.,

2023; Bennedsen et al., 2024; Shi et al., 2024; Chong and Todorov, 2024), options pricing

(Livieri et al., 2018; Bayer et al., 2016; Garnier and Sølna, 2018), variance swaps (Bayer

et al., 2016), portfolio choice (Fouque and Hu, 2019), trading strategies (Glasserman

and He, 2020), and hedging (Euch and Rosenbaum, 2018).

Due to the complex dependence structure of the increments of fBm (known as the

fractional Gaussian noise or fGn), the fOU process, sampled at discrete points in time, is

not Markovian. This non-Markovian property poses challenges in constructing ML esti-

mation from discretely-sampled data. Recently, several alternative estimation methods

have been proposed to estimate parameters in the fOU process based on discrete samples,

including the method-of-moments (MM) method by Wang et al. (2023, WXY hereafter),

the maximum composite likelihood (MCL) method by Bennedsen et al. (2023, 2024),

and the approximate Whittle ML (AWML) method proposed by Shi et al. (2024). The

MM and MCL methods are expected to be inefficient, as they only utilize limited infor-

mation. The AWML method can yield asymptotic efficient estimators for the parameters

in fOU, except the location parameter µ, which is usually estimated separately by the
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sample mean or another consistent estimator a priori. However, the AWML estimators

may not perform well in finite samples when the Whittle method approximates the exact

likelihood function poorly. The concerns above motivates this paper to construct feasible

exact ML estimation.

In this paper, we first provide two analytic formulae for the autocovariance function

of the fOU process, which facilitate (i) exact ML estimation, (ii) checking the accuracy

of an approximate likelihood method of Shi et al. (2024), and (iii) obtaining the optimal

forecasts with fOU based on discretely sampled data. We show that the approximate

likelihood method may give a poor finite-sample approximation, especially when the

sample size is small and H is large. Regarding out-of-sample forecasting, the common

practice in the literature is using the Euler scheme to discretize the continuous-record-

based forecasting formula given by Fink et al. (2013) and then generating forecasts.

This method is not optimal when only a discrete sample is available. Hence, the opti-

mal forecasting formula for discrete samples proposed in this paper is fundamental for

empirical studies related to forecasting.

The paper then develops a large-sample theory for the ML estimators of all the

parameters in fOU under the long-span asymptotic scheme, where the sample size goes

to infinity with a fixed sampling interval. Consistency and asymptotic normality are

established. Compared to the asymptotic theory of the MCL estimators developed by

Bennedsen et al. (2024) and that of the MM estimator studied by Wang et al. (2023),

which is discontinuous at H = 3/4 for both the convergence rate and the asymptotic

distribution, our asymptotic theory for the exact ML estimators uniformly applies to

all the values of H ∈ (0, 1), with the asymptotic covariance matrix being a continuous

function of H. This feature greatly facilitates statistical inference, especially when the

confidence interval of H includes 3/4.

In addition, the newly developed large sample theory for the location parameter µ

shows that the exact ML estimator is more efficient than the sample mean, especially

when H > 1/2. The asymptotic theory for ML estimators of the long memory stationary

process has been well studied in the literature, including the seminal works of Fox and

Taqqu (1986), Dahlhaus (1989), and Lieberman (2012). However, these works either

assume the location parameter of the process is known or is estimated prior by the sample

mean or other consistent estimators with a specific convergence rate. Our asymptotic

theory extends results in the literature when all parameters are estimated simultaneously

by the ML approach.

With realistic parameter settings relevant to financial markets, we have conducted
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comprehensive simulation studies to compare the finite sample performance of the ML

estimation method with that of the existing estimation methods. The simulation results

demonstrate improved forecasting accuracy using the ML estimators and the proposed

optimal forecasting formula for discrete samples.

For empirical applications, we fit the fOU process to daily realized volatility (RV)

and daily trading volume for ten exchange traded funds. Strong evidence of roughness

for the logarithmic RV and trading volume series is found. Moreover, we compare the

out-of-sample forecasting performance of RV using the fOU process with three different

estimation methods (i.e., ML, MCL, and MM) and two different forecasting methods. It

has been found that the forecasts generated by using the ML estimation method together

with the proposed optimal forecast formula for discrete observations have the most minor

mean squared error for all assets considered. The Diebold-Mariano test shows that the

improvement relative to the forecasts from other combinations of estimation approach

and forecasting formula are statistically significant. In addition, the results of the model

confidence set test proposed by Hansen et al. (2011) suggest that the ML method

together with the optimal forecast formula is always in the set of best predictive methods

for all the assets.

The rest of the paper is structured as follows. In Section 2, we first introduce the fOU

process and present two analytic formulae for the autocovariance of the fOU process.

We then check the performance of the expressions against numerical methods, taking

account of both accuracy and computational cost. Section 3 considers two applications

of the analytic formulae for the autocovariance of fOU: investigating the distance of the

Whittle approximation from the exact likelihood function and constructing the optimal

forecasting formula with discrete samples, respectively. Section 4 studies the feasible

exact ML estimation and develops the long-span asymptotic theory of the ML estima-

tor. In Section 5, the finite sample performance of the ML method is compared with

that of existing methods using simulated data. Moreover, the finite sample accuracy

of the forecasts generated using the ML method and the proposed optimal forecasting

formula is compared with that generated from combinations of alternative estimation

approaches and forecasting formulae. Section 6 presents some empirical applications of

the fOU process. Section 7 concludes. The proofs are given in the Appendix. The online

supplement contains additional proof details, simulations, and empirical results.

Throughout the paper, we use
p→,

d→,
d
= to denote convergence in probability, con-

vergence distribution, and distributional equivalence, respectively. For a matrix A, |A|
represents its determinant, and ∥A∥ =

(
tr
(
A⊤A

))1/2
denotes the Euclidean norm, where
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the upper index ⊤ denotes vector/matrix transpose. For a matrix series {Aj}, when
∥Aj −A∥ → 0, it is claimed that Aj converges to A.

2 fOU Process

2.1 Some preliminaries of fOU

The standard OU process is driven by the standard Bm (Wt), defined by

dZt = κ(µ− Zt)dt+ σdWt, Z0 = Op(1), (2.1)

which has a unique path-wise solution given by

Zt = e−κtZ0 +
(
1− e−κt

)
µ+ σ

∫ t

0
e−κ(t−s)dWs.

Under the conditions of κ > 0 and Z0 ∼ N
(
µ, σ2/ (2κ)

)
, Zt is stationary and ergodic.

The fOU process is an extension of the standard OU process above by replacing Wt

in (2.1) with an fBm, BH
t for H ∈ (0, 1). An fBm is a zero mean Gaussian process with

the autocovariance function of

Cov
(
BH

t , BH
s

)
=

1

2

(
|t|2H + |s|2H − |t− s|2H

)
, ∀t, s ∈ [0,∞) , (2.2)

where H ∈ (0, 1) is called the Hurst parameter. When H = 0.5, BH
t becomes a standard

Bm, that is, B0.5
t

d
= Wt, which has independent increments. In contrast, whenever

H ̸= 0.5, BH
t has stationary increments with a rich serial dependence structure. The

increment sequence has long memory property (i.e., the summation of autocovariances

diverges to infinity) when H ∈ (0.5, 1), whereas it becomes antipersistent (i.e., the

summation of autocovariances equals zero) when H ∈ (0, 0.5). In addition, BH
t is self-

similar in the sense that ∀a ∈ R, BH
at

d
= |a|HBH

t .

Strictly speaking, the fOU process is defined by the following differential equation:

dXt = κ(µ−Xt)dt+ σdBH
t , X0 = Op(1) , (2.3)

which has a unique path-wise solution as

Xt = e−κtX0 +
(
1− e−κt

)
µ+ σ

∫ t

0
e−κ(t−s)dBH

s . (2.4)

Let Γ(α) =
∫∞
0 yα−1e−ydy denote the Gamma function. When κ > 0 and X0 ∼

N
(
µ, σ2Γ(2H + 1)/

(
2κ2H

))
, Xt is stationary and ergodic. Moreover, Xt is (locally)
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Hölder continuous of order H − ϵ for any ϵ > 0. Hence, the fOU process with H < 0.5

has sample paths rougher than those of the standard OU process with H = 0.5. As a

result, the fOU process with H < 0.5 is referred to as a rough fOU process; see Gatheral

et al. (2018).

Define C (H) := Γ (2H + 1) sin (πH). Hult (2003) obtains the spectral density of the

continuous-time fOU process as

fX (λ;β) =
σ2

2π
C (H) |λ|1−2H(κ2 + λ2)−1 for λ ∈ (−∞,∞). (2.5)

with β ≡ (σ2, κ,H)⊤. In the literature, various methods have been proposed to estimate

parameters of the fOU process based on a continuous record. A partial list of important

contributions include Kleptsyna et al. (2000), Kleptsyna and Le Breton (2002), Hu and

Nualart (2010), Hu et al. (2019), Xiao and Yu (2019a, b), Lohvinenko and Ralchenko

(2017, 2019), Tanaka et al. (2020), Tanaka (2013). However, although fOU is specified

in continuous time, in practice, observations are almost always available in a discrete

sample. As a result, the above-mentioned estimation methods have been rarely used in

practice.

In the present paper, we assume κ > 0 and study the ML estimation approach and the

optimal forecast of fOU based on discrete-time observations, sayX = (X0, X∆, · · · , Xn∆)
⊤,

where n + 1 is the sample size and ∆ is the sampling interval. The discrete time se-

ries {Xj∆}j=0,1,2,...,n is a Gaussian stationary process with the following spectral density

(Hult, 2003)

f∆
X (λ;β) =

σ2

2π
C (H)∆2H

∞∑
k=−∞

|λ+ 2πk|1−2H

(κ∆)2 + (λ+ 2πk)2
for λ ∈ [−π, π] . (2.6)

When 0.5 < H < 1, it can be shown that

f∆
X (λ;β) = |λ|1−2H Lκ (λ) → ∞ as λ → 0

where Lκ (λ) is a slowly varying function as λ → 0 with the following expression and

limit

Lκ (λ) =
σ2

2π
C (H)∆2H

 1

(κ∆)2 + λ2
+ |λ|2H−1

∑
k ̸=0

|λ+ 2πk|1−2H

(κ∆)2 + (λ+ 2πk)2

 (2.7)

→ σ2

2π
C (H)∆2H 1

(κ∆)2
.
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Hence, {Xj∆} is a long-memory process. Whereas, in the case of 0 < H ≤ 0.5, it has

lim
λ→0

f∆
X (λ;β) = f∆

X (0;β) =
σ2

2π
C (H)∆2H

∞∑
k=−∞

|2πk|1−2H

(κ∆)2 + (2πk)2
∈ (0,∞),

which means {Xj∆} becomes a short-memory weakly stationary process.

From the Gaussianity of fOU, the likelihood function is

Ln (θ) = (2π)−(n+1)/2 |σ2Σ|−
1
2 exp

(
− 1

2σ2
(X− µ1)⊤Σ−1 (X− µ1)

)
, (2.8)

where θ = (µ, σ2, κ,H)⊤ contains all unknown parameters in fOU, 1 = (1, 1, . . . , 1)⊤, Σ

is the covariance matrix of σ−2X, which is a symmetric Toeplitz matrix and defined by

Σ = σ−2 [Cov(Xi∆, Xs∆)]i,s=0,1,··· ,n := σ−2

 γ0 γ∆ . . . γn∆
...

...
...

...
γn∆ γ(n−1)∆ . . . γ0

 , (2.9)

where γj∆ denotes the jth autocovariance of discretely sampled fOU.

Choosing θ to maximize lnLn (θ) yields the ML estimate. Garnier and Sølna (2018)

(Eq. (6)) provide an expression of the autocovariance:

γj∆ =
σ2

2κ2H

(
1

2

∫ ∞

−∞
e−|y||κj∆+ y|2Hdy − |κj∆|2H

)
for j = 0, 1, . . . , n. (2.10)

When j = 0, γj∆ becomes the variance of Xi∆ and can be written as

Var(Xt) =
σ2

2κ2H

∫ ∞

0
e−yy2Hdy =

σ2Γ(2H + 1)

2κ2H
. (2.11)

2.2 Two analytic formulae for the autocovariance

Although Equation (2.10) gives an expression for each element in the covariance matrix

Σ, it involves an integral over the interval of (−∞,+∞). Generally this integral must be

evaluated numerically. Numerical integrations for all potential parameter values make

the ML estimation extremely time-consuming, especially when n is large. Moreover, nu-

merical integrations potentially lead to large approximation errors, making the resulting

MLE distant from the actual parameter values. This subsection provides two alternative

analytic formulae for γj∆ to facilitate the calculation of the likelihood function.

Lemma 2.1 Consider fOU defined in (2.3) with κ > 0 and the stationary initial condi-

tion of X0 ∼ N
(
µ, σ2Γ(2H + 1)/

(
2κ2H

))
. Let {X0, X∆, · · · , Xn∆} be a discrete sample.
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For any j ≥ 0, it has

(a):

γj∆ =
σ2e−κj∆

4κ2H
{
Γ(2H + 1)− (κj∆)2H1F1(2H; 1 + 2H;κj∆) + 2He2κj∆Γ(2H,κj∆)

}
,

(2.12)

where 1F1(·; ·; ·) and Γ(·, ·) are, respectively, the confluent hypergeometric function of the

first kind and the upper incomplete Gamma function defined by

1F1(2H; 1 + 2H;κj∆) =

∞∑
n=0

2H

2H + n

(κj∆)n

n!
, (2.13)

and

Γ(2H,κj∆) =

∫ ∞

κj∆
s2H−1e−sds = Γ(2H)−

∫ κj∆

0
s2H−1e−sds ;

(b):

γj∆ =
σ2

2κ2H

{
cosh(κj∆)Γ(2H + 1)− (κj∆)2H1F2

(
1;H +

1

2
, H + 1;

(κj∆)2

4

)}
(2.14)

where cosh(x) = [exp(x) + exp(−x)] /2 is the hyperbolic cosine function and 1F2 denotes

the generalized hypergeometric function as

1F2

(
1;H +

1

2
, H + 1;

(κj∆)2

4

)
=

∞∑
n=0

Γ(H + 1/2)Γ(H + 1)

Γ(H + 1/2 + n)Γ(H + 1 + n)

(
κj∆

2

)2n

(2.15)

Remark 2.1 As simulation results provided later suggest, the two analytic formulae

have the same accuracy in computing γj∆ and yield more accurate results than well-

known numerical integration methods. Note that γj∆ is a typical element in Σ, whose

determinant and inverse must be calculated to evaluate the log-likelihood function in

(2.8). Errors in approximating γj∆ by numerical integration methods may translate to

the determinant and the inverse of Σ. As a result, they may potentially distort the ML

estimate.

Remark 2.2 Between the two analytic formulae, (2.14) is faster to compute than (2.12)

for two reasons. First, 1F2 is faster to compute than 1F1. That is because the term

Γ(H + 1/2)Γ(H + 1)

Γ(H + 1/2 + n)Γ(H + 1 + n)
= O

(
1

n!n!

)
converges faster than 2H

2H+n
1
n! . Second, the formulae in (2.12) needs to calculate an extra

term, Γ(2H,κj∆).
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Remark 2.3 Hult (2003) gives an alternative formula of the autocovariance γj∆ as

γj∆ =σ2Γ(2H + 1) sin(πH)

{
1

2
κ−2H sec(π(1− 2H)/2) cosh(κj∆)

+
(j∆)2HΓ(−H)√

π22H+1Γ(H + 1/2)
1F2

(
1;H +

1

2
, H + 1;

(κj∆)2

4

)}
. (2.16)

In the Online Supplement, we show how this formula is related to (2.14).

Remark 2.4 Unlike the expression given in (2.10) where each element in Σ must be

obtained by numerical integrations, the expressions given in (2.12), (2.14) and (2.16)

suggest that we can calculate all the elements in Σ without relying on any numerical

integration methods. All the special functions involved in the formulae presented in

Lemma 2.1 and (2.16) have been well studied in the mathematics literature and can be

accurately calculated by using built-in functions in standard softwares, such as MATLAB

and R.

2.3 Performance of alternative expressions

We now evaluate the accuracy and the computational cost of evaluating (2.10) numer-

ically and calculating (2.12), (2.14) and (2.16). To do so, we set σ = 1, H = 0.2,∆ =

1/252 and κ = 1 but allow j to vary from 0 to 2500. When evaluating (2.10) numeri-

cally, we use MATLAB commands quadgk and integral. The MATLAB command quadgk

evaluates the integral numerically based on high-order global adaptive quadrature and

default error tolerances. The MATLAB command integral evaluates the integral numer-

ically based on global adaptive quadrature and default error tolerances. Moreover, we

calculate the expressions given in (2.12), (2.14) and in (2.16) by using the MATLAB

commands to evaluate 1F1 and 1F2, and the MATLAB commands gamma, igamma to

evaluate Γ(·) and Γ(·, ·).
Table 1 reports autocovariances of fOU using different methods when j=0, 1, 100,

200, 300, 400, 500, 1000, 1500, 2000, 2500 while Table 2 reports the CPU time (in

seconds) in calculating the autocovariance values for j = 0, 1, ..., 2500 when running

MATLAB2021b in a 2.8 GHz Intel Core i7-10710U CPU with 16 GB of RAM and Win-

dows 10. According to Table 1, the three analytic formulae given in (2.12), (2.14) and

(2.16) always yield the identical values. However, both quadgk and integral give differ-

ent values from those calculated from the analytic formulae, suggesting that numerical

integrations lead to approximation errors. Between the two numerical methods, integral

has smaller approximation errors than quadgk. However, according to Table 2, integral
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is computationally more costly than quadgk. Among the three analytic formulae, (2.14)

is the fastest to compute and (2.12) is the slowest, as expected. Computing (2.10) by

quadgk is faster than by using the three analytical expressions. However, as shown in

Table 1, quadgk leads to much larger approximation errors.

Table 1: The values of the autocovariances using different formulae when σ = 1, H = 0.2,∆ =

1/252, κ = 1, and j = 0, 1, 100, 200, 300, 400, 500, 1000, 1500, 2000, 2500. The boldface shows the

difference.

j (2.10) by quadgk (2.10) by integral (2.12), (2.14), (2.16)

0 .443631908751538 .443631908751538 .443631908751538
1 .388882037284944 .388881922491498 .388881909561334
100 .117190968855458 .117190530899574 .117190522788601
200 .045869415544228 .045869299134194 .045869320276164
300 .012355758479432 .012355472615600 .012355439277410
400 -.004112113948332 -.004112210815218 -.004112011199993
500 -.011890279222754 -.011890441908578 -.011890470208617
1000 -.013084013072070 -.013091808741521 -.013091823515404
1500 -.007620166025256 -.007620537228084 -.007620528689543
2000 -.004703526957885 -.004705950339660 -.004705938475695
2500 -.003208318355352 -.003208393056313 -.003208393362911

Table 2: CPU time (in seconds) of computing the autocovariances using different formulae when

σ = 1, H = 0.2,∆ = 1/252, κ = 1, and j = 0, ..., 2500.

j (2.10) by quadgk (2.10) by integral (2.12) (2.14) (2.16)

from 0 to 2500 3.437500 41.250000 6.687500 4.218750 4.578125

To further understand the implications of the approximation errors, we apply quadgk,

integral and (2.14) to calculate ln |Σ| and lnLn(θ) when n = 2500 andH = 0.2, 0.4, 0.6, 0.8.

Table 3 reports the values of ln |Σ| and lnLn(θ) when σ = 1,∆ = 1/252, κ = 1, calcu-

lated by applying three alternative methods: (2.10) by quadgk, (2.10) by integral, and

(2.14). It is clear that the errors incurred by quadgk and integral in approximating the

autocovariances lead to substantial errors in approximating ln |Σ| and lnLn(θ), espe-

cially for quadgk and when H is large. To strike the balance between the computational

speed and numerical precision, in the rest of the paper, we will apply the analytical

expression (2.14) to calculate autocovariance.
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Table 3: Values of ln |Σ| and lnLn(θ) when σ = 1,∆ = 1/252, κ = 1, H =
0.2, 0.4, 0.6, 0.8, and n = 2500 obtained by alternative methods of computing the au-
tocovariances. The boldface shows the difference.

H Expression (2.10) by quadgk (2.10) by integral (2.14)

0.2
ln |Σ| -8507.250816421579657 -8507.052292128733825 -8507.053629693704352

lnLn(θ) -5563.078623025841807 -5563.643675034223634 -5563.647212954847419

0.4
ln |Σ| -11833.823834806182276 -11832.647803225803727 -11832.642928066117747

lnLn(θ) -3510.705013957488518 -3510.058645632319531 -3510.005125368167683

0.6
ln |Σ| -15998.984553859338121 -15985.467690883881005 -15985.430818915077907

lnLn(θ) -2869.805004141110658 -2862.548594308252177 -2862.475203322524976

0.8
ln |Σ| -21381.235952217579324 -20788.155230374970415 -20788.131369394981448

lnLn(θ) -2484.097131805580375 -2565.166811946502094 -2565.154210472930117

3 Applications to Likelihood Approximation and Optimal
Forecast

We consider two applications of the analytic formulae: (i) evaluating the accuracy of

the approximate Whittle likelihood proposed by Shi et al. (2024), which motivates the

use of exact ML estimation, and (ii) deriving the optimal forecast based on a discrete

sample.

3.1 Likelihood approximation by Approximate Whittle Likelihood

Whittle (1951, 1954) proposed a way to approximate the log-likelihood function of a

stationary model based on the spectral density. The log Whittle likelihood function

takes the form of

lW (β) = − 1

4π

∫ π

−π

(
ln f∆

X (λ;β) +
Pn(λ)

f∆
X (λ;β)

)
dλ, (3.1)

where β = (σ2, κ,H)⊤, f∆
X (λ;β) is the spectral density given in (2.6), and Pn (λ) is the

periodogram. When the location parameter µ is known and assumed to be zero, let

i :=
√
−1 and then Pn (λ) is

Pn (λ) =
1

2π(n+ 1)

∣∣∣∣∣∣
n∑

j=0

Xj∆ exp (−ijλ)

∣∣∣∣∣∣
2

. (3.2)
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When µ is unknown that is often the case in practice, Shi et al. (2024) proposed to

obtain the periodogram Pn (λ) by using the sample mean X̄ as1

Pn (λ) =
1

2π(n+ 1)

∣∣∣∣∣∣
n∑

j=0

(Xj∆ − X̄) exp (−ijλ)

∣∣∣∣∣∣
2

. (3.3)

The log Whittle likelihood function is derived from the following two well-known ap-

proximations:

Σ−1 ≈ [ajk]
n+1
j,k=1 and ln |Σ| ≈ (n+ 1) (2π)−1

∫ π

−π
ln f∆

X (λ;β) dλ,

where ajk = (2π)−2 ∫ π
−π f

∆
X (λ;β)−1 ei(j−k)λdλ.

However, the spectral density of the fOU process f∆
X (λ;β) given in (2.6) is not avail-

able in closed form in the sense that it involves an infinite summation, which converges

at a slow rate when H is close to zero. Shi et al. (2024) proposed the modified Paxson

approximation to calculate f∆
X (λ;β) and showed that it yields very small approximation

errors.

The AWML estimate of β can be obtained by minimizing lW (β) with respect to β,

under the constraints of σ2 > 0, κ > 0, H ∈ (0, 1), which is denoted by β̂AWML. The

asymptotic theory for β̂AWML is

√
n
(
β̂AWML − β

)
d→ N

(
0,

(
1

4π

∫ π

−π

{
∂ ln f∆

X (λ;β)

∂β

}{
∂ ln f∆

X (λ;β)

∂β′

}
dλ

)−1
)
.

(3.4)

For the weakly stationary first-order autoregressive model, Rao and Yang (2021)

derive an analytic expression for the difference between the log likelihood function and

the log Whittle likelihood function. Unfortunately, to the best of our knowledge, no

analytic expression is available for the fOU model. However, the derived analytic ex-

pressions for covariances facilitate the calculation of the exact log likelihood, and hence,

checking the accuracy of the approximate Whittle likelihood proposed by Shi et al.

(2024) numerically. To investigate the difference between lnLn(0, β) and lW (β), Table

4 reports lnLn(0, β)/(n + 1), lW (β)/(n + 1), and (lnLn(0, β) − lW (β))/Ln(0, β) when

µ = 0, κ = 1, σ = 1, ∆ = 1/252, n = 504, 2520, H = 0.1, 0.3, 0.5, 0.7, with the data

{Xj∆} simulated from fOU. It clearly shows that lW (β) provides worse approximations

1While Shi et al. (2024) did not claim to use X̄ to estimate µ nor develop the asymptotic theory
for X̄, since In (λ) is calculated from X̄, we will use it to estimate µ for AWML in our simulation and
empirical studies.
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to lnLn(0, β) when H is large or when n is small. These differences are expected to

have implications for the finite sample performance of the AWML method relative to

the exact ML method, which will be carefully investigated in Section 5.

Table 4: The difference between lnLn(0, β)/(n+1) and lW (β)/(n+1) when κ = 1, σ = 1,
∆ = 1/252, n = 2520, 504, H = 0.1, 0.3, 0.5, 0.7 and with data {Xj∆} simulated from
fOU.

n H lnLn(0,β)
n+1

lW (β)
n+1

((lnLn(0,β)−lW (β)))
lnLn(0,β)

× 100

2520

0.1 -0.485656 -0.484626 .0212
0.3 -2.608224 -2.60467 .0136
0.5 -4.873668 -4.83139 .0867
0.7 -7.327926 -6.983444 4.701

504

0.1 -0.465799 -0.461355 .0954
0.3 -2.410964 -2.333839 3.199
0.5 -4.524476 -3.871145 14.44
0.7 -6.851600 0.760280 111.10

3.2 Optimal forecast

When a continuous-time record of Xt over the period of (0, T ] is available, Fink et al.

(2013) develop the formula of the conditional expectation and conditional variance of

XT+h with h > 0 to generate the optimal forecast.

When a discrete sample is available, WXY apply the Euler scheme to the formulae

derived in Fink et al. (2013) to generate forecast.2 With discrete-time observations,

however, the formula of conditional mean derived by Fink et al. (2013) is not optimal

for forecasting purposes anymore, for it does not minimize the root mean squared error

(RMSE).

Let γ
(0:n∆)
h∆ =

(
Cov

(
X(n+h)∆, X0

)
, ...,Cov

(
X(n+h)∆, Xn∆

))⊤
be the vector of covari-

ances between X(n+h)∆ and X. The expectation of X(n+h)∆ conditional on the historical

discrete-time observations X is

E(X(n+h)∆|X) = µ+
(
γ
(0:n∆)
h∆

)⊤
Σ−1(X− µ1), (3.5)

which gives the optimal forecast of X(n+h)∆ when X is available because it minimizes

2Recently, Gao et al. (2023) propose an alternative numerical method to approximate the conditional
variance formula of Fink et al. (2013) (see Algorithm 1 in Gao et al. (2023)), which will be used in
the rest of the paper.
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the mean squared error (MSE) of the forecast errors, which is given by

E
[{

E(X(n+h)∆|X)−X(n+h)∆

}2]
= γ0∆ −

(
γ
(0:n∆)
h∆

)⊤
Σ−1

(
γ
(0:n∆)
h∆

)
. (3.6)

Since elements in Σ and γ
(0:n∆)
h∆ are readily obtained from (2.14), our analytic formula

facilitate the calculation of the optimal forecast when a discrete sample is available.

When the quantity of interest is exp
(
X(n+h)∆

)
instead of X(n+h)∆ (i.e., RV instead

of log RV), as shown in WXY, one must also compute the conditional variance based on

a discrete sample, which takes the same form as the MSE above, for X(n+h)∆ and X are

jointly normally distributed. Again, our analytic formula given in (2.14) facilitates the

forecasting procedure for exp
(
X(n+h)∆

)
.

4 Exact ML Estimation and Asymptotic Theory

In Section 3 we have shown that the approximate Whittle method may provide poor

approximations to the true log likelihood when H is large and n is small. This obser-

vation suggests that it is important to calculate the exact likelihood function and then

to produce the exact ML estimate. The derived analytic formula of the autocovariance

function γj∆ given in Lemma 2.1 significantly facilitates the construction of the exact

ML estimator based on a discrete sample. This section, therefore, constructs the ML

estimator in details and develops its long-span asymptotic theory. The long-span asymp-

totic scheme assumes n → ∞ with a fixed ∆, which is the same scheme adopted in Shi

et al. (2024) and Bennedsen et al. (2024), but different from the double asymptotic

scheme considered in WXY that requires ∆ → 0 simultaneously.

Consider the case where the location parameter µ is unknown. From (2.8), the

log-likelihood function of the fOU process takes the form of

ln(θ) = −n+ 1

2
ln(2π)− 1

2
ln |σ2Σ| − 1

2σ2
(X− µ1)⊤Σ−1 (X− µ1) . (4.1)

Note that the elements in Σ depend on κ and H only. Hence, we can profile the log-

likelihood by

µ(κ,H) =
1⊤Σ−1X

1⊤Σ−11
, (4.2)

σ2(κ,H) =
(X− µ(κ,H)1)⊤Σ−1 (X− µ(κ,H)1)

n+ 1
=

X⊤Σ−1X−(1⊤Σ−1X)
2

1⊤Σ−11

n+ 1
. (4.3)

Substituting (4.2) and (4.3) into (4.1) yields the following profile log-likelihood function

ln(κ,H) = −n+ 1

2
ln(2π)− n+ 1

2
lnσ2(κ,H)− 1

2
ln |Σ| − n+ 1

2
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∝ −n+ 1

2
lnσ2(κ,H)− 1

2
ln |Σ| (4.4)

Maximizing the profile log-likelihood function above yields the ML estimators of κ and

H, which can be identically written as(
κ̂ML, ĤML

)
= argmin

κ,H

[
(n+ 1) lnσ2 (κ,H) + ln |Σ|

]
. (4.5)

Consequently, injecting
(
κ̂ML, ĤML

)
into formulae (4.2) and (4.3) gives the ML esti-

mators of µ and σ2, respectively:

µ̂ML = µ(κ̂ML, ĤML) and σ̂2
ML = σ2(κ̂ML, ĤML). (4.6)

In the rest of the paper, we use θ̂ML ≡
(
µ̂ML, σ̂2

ML, κ̂ML, ĤML

)⊤
=
(
µ̂ML, β̂

⊤
ML

)⊤
to

denote the MLE of θ with β̂ML ≡
(
σ̂2

ML, κ̂ML, ĤML

)⊤
.

The long-span asymptotic properties of θ̂ML are provided in Theorem 4.1.

Theorem 4.1 For H ∈ (0, 1), let f∆
X (λ;β) denote the spectral density given in (2.6),

gn(H) =

{
n1−H if H > 1/2,

n1/2 if H ≤ 1/2
and An(θ) = diag(gn(H),

√
n,

√
n,

√
n). When n → ∞

with a fixed ∆, it has

An(θ)
(
θ̂ML − θ

)
d→ N

(
0, I−1 (θ)

)
, (4.7)

where

I−1 (θ) =

(
Avarµ 0

0
[

1
4π

∫ π
−π

(
∇ ln f∆

X (λ;β)
) (

∇ ln f∆
X (λ;β)

)⊤
dλ
]−1

)
,

with

Avarµ =

{
2πf∆

X (0;β) if H < 1/2,
Γ(2−2H)

B(3/2−H,3/2−H)
σ2C(H)∆2H−2

κ2 if H ≥ 1/2
,

B (a, b) = Γ (a) Γ (b) /Γ (a+ b) being a Beta function.

Remark 4.1 Theorem 4.1 shows that a unified asymptotic theory of β̂ML =
(
σ̂2

ML, κ̂ML, ĤML

)⊤
applies to all values of H ∈ (0, 1). The asymptotic covariance continuously changes in

H. This feature facilitates statistical inference. In sharp contrast, for the long-span

asymptotic theory of the MCL estimator in Bennedsen et al. (2024) and the double

asymptotic theory of the MM estimator in Wang et al. (2023), both the convergence rate

and the asymptotic distribution are discontinuous at H = 3/4. Moreover, the asymptotic

Rosenblatt distribution has to be applied for the MCL estimator and the MM estimator

when H > 3/4, making statistical inference difficult.
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Remark 4.2 Also shown by Theorem 4.1 is that the exact ML estimator β̂ML has the

same asymptotic theory as the AWML estimator β̂AWML in Shi et al. (2024). However,

since AWML is based on the approximate likelihood function, which can be far away from

the exact likelihood function, especially when H is large and n is small, as shown by the

simulation results reported in Table 4. We expect β̂ML is more efficient than AWML

of Shi et al. (2024) in finite sample, especially when H > 0.5. Moreover, the AWML

method does not estimate µ.

Remark 4.3 Theorem 4.1 shows that, when H < 0.5, the convergence rate of µ̂ML

is
√
n, which does not depend on H. In contrast, the asymptotic theory developed in

Adenstedt (1974) suggests that the convergence rate of the ML estimator of the location

parameter is n1−H for fGn with H ∈ (0, 0.5) and for the ARFIMA(p, d, q) model with

the memory parameter d = H − 0.5 ∈ (−0.5, 0). While this difference appears to be

surprising, it is caused by the fact that the fGn and the ARFIMA(p, d, q) process are

antipersistent with a zero long-run variance when H ∈ (0, 0.5). Whereas, when H < 0.5,

the fOU process is a short memory stationary process with a well-defined strictly positive

long-run variance as

0 < 2πf∆
X (0;β) = σ2C (H)∆2H

∞∑
k=−∞

|2πk|1−2H

(κ∆)2 + (2πk)2
< ∞.

5 Monte Carlo Studies

This section is devoted to evaluating the finite-sample performance of the ML estimators

when a discrete sample is simulated from Model (2.3). The simulation procedures for

the fOU process are the same as in WXY. To examine the relative performance of the

ML method, we apply three existing estimation methods to the simulated data: the

MM method of WXY, the MCL method of Bennedsen et al. (2024), and the AWML

method of Shi et al. (2024). The AWML method has been introduced in Section 3. We

now briefly review the MM and MCL methods to improve the readability of comparison

results presented below.
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5.1 Alternative estimators

WXY use four moment conditions to construct the MM estimators for parameters in

fOU, that is,

ĤMM =
1

2
log2


n−4∑
i=0

(
X(i+4)∆ − 2X(i+2)∆ +Xi∆

)2
n−2∑
i=0

(
X(i+2)∆ − 2X(i+1)∆ +Xi∆

)2
 ,

σ̂MM =

√√√√√√
n−2∑
i=0

(
X(i+2)∆ − 2X(i+1)∆ +Xi∆

)2
(n+ 1)

(
4− 22ĤMM

)
∆2ĤMM

,

µ̂MM =
1

n+ 1

n∑
i=0

Xi∆,

κ̂MM =


(n+ 1)

n∑
i=0

X2
i∆ −

(
n∑

i=0
Xi∆

)2

(n+ 1)2σ̂2
MMĤMMΓ

(
2ĤMM

)


−0.5/ĤMM

,

where log2 (·) is the base-2 logarithm.

Under some mild regularity conditions, WXY derive the asymptotic distributions of

MM estimators with T = n∆ denoting the time span of the data:

√
n
(
ĤMM −H

)
d→ N

(
0,

Σ11 +Σ22 − 2Σ12

(2 ln 2)2

)
as ∆ → 0;

√
n

ln (1/∆)
(σ̂MM − σ)

d→ N
(
0,

Σ11 +Σ22 − 2Σ12

(2 ln 2)2
σ2

)
as ∆ → 0;

T 1−H (µ̂MM − µ)
d→ N

(
0, σ2/κ2

)
as ∆ → 0, T → ∞, T 1−H∆H → 0;

√
T (κ̂MM − κ)

d→ N (0, κϕH) as ∆ → 0, T → ∞,
√
T∆H → 0 for H ∈ (0, 3/4);

√
T

ln(T )
(κ̂MM − κ)

d→ N
(
0,

16κ

9π

)
as ∆ → 0, T → ∞,

√
T∆H/ ln (T ) → 0 for H = 3/4;

T 2−2H (κ̂MM − κ)
d→ −κ2H−1

HΓ(2H + 1)
R as ∆ → 0, T → ∞, T 2−2H∆H → 0 for H ∈ (3/4, 1);

where R is a Rosenblatt random variable, and the expressions for Σ11, Σ22, Σ12, ϕH are

presented in WXY.
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Remark 5.1 The asymptotic theory of the MM estimators is more complicated than

that of the ML estimators in three aspects. First, for the MM estimators, the asymptotic

theory of H and σ is based on the in-fill asymptotic scheme, whereas the asymptotic

theory of κ and µ is developed under the double scheme. In contrast, the asymptotic

theory of all ML estimators is derived uniformly under the long-span asymptotic scheme.

Second, the asymptotic theory of the MM estimator of κ is discontinuous in terms of

both the convergence rate and the limiting distribution at H = 3/4, which makes the

asymptotic theory challenging to apply when the confidence interval of H include 3/4.

On the other hand, the asymptotic theory of the ML estimator of κ is unique, with the

asymptotic variance being a continuous function of the value of H. Third, the limit

distribution for κ̂MM becomes non-standard when H ∈ (3/4, 1) but remains Gaussian

for κ̂KL.

Remark 5.2 Since the asymptotic schemes used by MM and ML are different, we can-

not compare their asymptotic efficiency based on the asymptotic theory. We will examine

their finite-sample performance using simulated data. Since MM only uses limited infor-

mation, it is expected that ML would be more efficient than MM.

Remark 5.3 The MM estimators have closed-form expressions, a feature making the

MM estimation extremely easy to implement. Whereas, the ML estimates must be cal-

culated via numerical optimizations, which are computationally more costly.

Being concerned about the high computational cost of the exact ML method, Benned-

sen et al. (2024) propose to use the MCL method of Lindsay (1988) to estimate pa-

rameters in fOU where the composite log-likelihood function is a weighted product of

densities of marginal or conditional events. When µ is known, let β̂MCL be the MCL es-

timators of β and f be the probability density of X that is defined on a probability space

(Ω, F, P ). Suppose (Am)Mm=1 is a collection of events with Am ∈ F and the likelihood

Lm(β) ∝ f (X ∈ Am;β). Then the composite likelihood is defined as

CL(β) =
M∏

m=1

Lm(β)wm , (5.1)

where w1, . . . , wM are nonnegative weights with
∑

mwm = 1.3 Consequently, the MCL

estimator of β is

β̂MCL = argmax
β

lnCL(β) . (5.2)

3As suggested by Bennedsen et al. (2024) we can set wk = 1/M .
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Under some mild regularity conditions, Bennedsen et al. (2024) derive the long-span

asymptotic distributions of MCL. That is, as n → ∞ with fixed ∆,

√
n
(
β̂MCL − β

)
d→ N

(
0, G−1 (β)

)
for H ∈ (0, 3/4);

√
n√

Lγ(n)

(
β̂MCL − β

)
d→ N

(
0, G−1 (β)

)
for H = 3/4;

n2−2HL
−1/2
2 (n)

(
β̂MCL − β

)
d→ U−1 (β)ΨR for H ∈ (3/4, 1) ,

where R is a Rosenblatt random variable, and U (β), G (β), Lγ (n), L2 and Ψ are defined

in Bennedsen et al. (2024).

Remark 5.4 As in the case of MM, both the limit distribution and the rate of conver-

gence of β̂MCL crucially depend on the true value of H. When H ∈ (0, 3/4), the rate of

convergence is n−1/2, and the limit distribution is Gaussian. When H = 3/4, the rate of

convergence is

( √
n√

Lγ(n)

)−1

. When H ∈ (3/4, 1), the convergence rate becomes n2H−2,

and the limit distribution becomes non-standard. This feature makes it challenging to

use in practice when the confidence interval of H includes 3/4. Moreover, since the rate

of convergence of β̂ML is n−1/2, ML is more efficient than MCL when H ∈ [3/4, 1).

Remark 5.5 In practice, µ is unknown. In the empirical study, Bennedsen et al. (2024)

estimate µ by the sample mean. As in Shi et al. (2024), the asymptotic distribution of

the sample mean is not considered. In principle, one could estimate µ by treating CL(β)

as a function of µ as well as β as in Bennedsen et al. (2023). If so, as remarked in

Bennedsen et al. (2024), it is difficult to derive the asymptotic distribution for β̂MCL.

Remark 5.6 Implementing the MCL approach requires a choice of M and {Am}. How-
ever, little is known about how to guide these choices in practice.

5.2 Simulation results

This subsection will first conduct some simulation studies to investigate the finite sample

performance of the proposed ML method and its relative performance against three exist-

ing estimation approaches: MM, MCL, and AWML. Then, we present other simulation

results to demonstrate the finite sample properties of alternative forecasting approaches.

To do ML estimation, we need to maximize the log-likelihood function given in (4.1)

numerically. The covariance matrix Σ is a real symmetric positive-definite Toeplitz

matrix. Gohberg and Semencul (1972) provide formulae that express the inverse of a
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Toeplitz matrix as a difference between products of triangular Toeplitz matrices (see,

for example, Page 174 in Ben-Artzi and Shalom, 1986). Let u = (u0, u1, . . . , un)
⊤ be the

first column of Σ−1 and v = (0, un, . . . , u1)
⊤. The inverse matrix can be represented as

Σ−1 =
1

u1

(
L (u)⊤ L (u)− L (v)⊤ L (v)

)
, (5.3)

where L(a) is a lower triangular Toeplitz matrix with the first column equal to a. To

obtain the value of u, we solve the equation Σ · u = (1, 0, . . . , 0)⊤ by applying the

Levinson algorithm proposed by Zhang and Duhamel (1992).

To calculate the determinant of Σ, we adopt the algorithm of Dietrich and Osborne

(1996) as

|Σk+1| = |Σk|
(
γ0 − γ⊤

k Σ
−1
k γk

)
, k = 1, . . . , n . (5.4)

where Σk denote the upper-left k × k block of the covariance matrix Σ and γk denote

the vector (γ1, . . . , γk)
⊤, which is the first column of Σk.

In the first experiment, we simulate 1,000 sample paths from Model (2.3) with κ =

4.446145, µ = −2.465673, σ = 1.172012, ∆ = 1/250, and H taking different values

from 0.1 to 0.8.4 When implementing MCL, we follow the suggestion of Bennedsen et

al. (2023) by using the pairwise likelihood of all pairs of observations with a maximum

of K periods distance between them for some fixed integer K > 0 such as (X∆, X2∆),

(X2∆, X3∆) ,. . . ,
(
X(n−1)∆, Xn∆

)
, (X∆, X3∆),. . . ,

(
X(n−K)∆, Xn∆

)
with K = 5. We also

choose the equal weight.5 Simulation results, including the mean and the standard

deviation (SD), are reported in Table 5 when n = 2500 and Table 6 when n = 500.

According to Table 5, ML always performs better than AWML, followed by MCL,

and then by MM for H,σ, κ in terms of the standard deviation. The improvement of

ML over AWML becomes more apparent as H increases, consistent with the findings

in Table 4. Moreover, although the ML estimate of µ is similar to the sample mean, it

provides greater accuracy for estimating µ when H ≥ 1/2. Similar conclusions can be

obtained from Table 6 when the sample size is n = 500. Compared with Table 5, we can

see that the improvement by ML over AWMLis more significant when the sample size is

smaller. This is not surprising since the Whittle method gives a poorer approximation to

the log-likelihood function when n becomes smaller. We also investigate the simulation

results when H is fixed to be 0.260573 and the other parameters (σ, µ, and κ) take

4Note that H = 0.260573, κ = 4.446145, µ = −2.465673, σ = 1.172012 are the estimated values by
the ML method when Model (2.3) is fitted to the logarithmic daily RV of SPY index.

5Unlike Bennedsen et al. (2024) where µ is estimated by the sample mean, we estimate µ together
with other parameters.
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various values. The findings are qualitatively unchanged, and the simulation results are

reported in the Online Supplement.

Next, we investigate the finite-sample properties of alternative forecasting formulae

when a discrete sample is simulated from fOU. We set H = 0.260573, κ = 4.446145, µ =

−2.465673, σ = 1.172012, n = 2500, ∆ = 1/250 and assume that all parameters are

known for generating forecasts. Thus, no estimation is needed. Then, we simulate 2500

observations for each replication. Alternative forecasting formulae are used to generate

h-step-ahead-forecasts with h = 1, 2, . . . 5, where the first 2500−h observations are used

to generate forecasts. Finally, we set the number of replications to 10000 and calculate

RMSE. The theoretical RMSE of the optimal forecast can be obtained as the square

root of the formula given in (3.6):

Theoretical RMSE of the optimal forecast =

√
γ0∆ −

(
γ
(0:n∆)
h∆

)⊤
Σ−1

(
γ
(0:n∆)
h∆

)
.

All results are reported Table 7.

It is evident from Table 7 that the RMSE of the optimal forecast obtained from

(3.5) is significantly lower than that of WXY and is close to the theoretical RMSE of

the optimal forecast. This finding indicates that when a discrete sample is available, it

is much better to use the conditional mean than the discretized formula of Fink et al.

(2013) to perform out-of-sample forecasts.

Results in Table 7 are obtained from the fOU model with known parameters. In prac-

tice, parameters are always unknown. To compare the magnitude of the forecast error

generated by alternative estimation methods and that generated by alternative forecast-

ing formulae, we perform h-step-ahead-forecast for h = 1, 2, . . . 5) using the following

combinations of methods: (i) ML-estimated fOU together with the optimal forecast

formula; (ii) MM-estimated fOU together with forecast formula from WXY; (iii) MM-

estimated fOU together with the optimal forecast formula. The RMSE, obtained from

1000 replications, is reported in Table 8.6 The ML estimate together with the optimal

forecast formula consistently produces the lowest RMSE while the MM estimate with

the forecast formula of WXY produces the highest RMSE.

6We also set H = 0.260573, κ = 4.446145, µ = −2.465673, σ = 1.172012, n = 2500,∆ = 1/250 for
simulating paths and then simulate 2500 observations for each replication.
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Table 5: Finite-sample properties of alternative estimation methods for (H,σ, µ, κ) with
various values of H ∈ [0.1, 0.8], n = 2500 and ∆ = 1/250.

κ H µ σ :::: κ H µ σ

Method True value 4.446145 0.100000 -2.465673 1.172012 :::: 4.446145 0.200000 -2.465673 1.172012

MM
Mean 8.156956 0.118790 -2.465673 1.172012 :::: 6.712958 0.218491 -2.466795 1.186114
SD 4.684829 0.026262 0.035257 0.178282 :::: 2.417307 0.021499 0.039498 0.139869

MCL
Mean 4.377534 0.098558 -2.465673 1.172012 :::: 4.719830 0.198960 -2.466795 1.059644
SD 1.759199 0.010438 0.035257 0.060048 :::: 1.488801 0.012786 0.039498 0.069837

AWML
Mean 4.386454 0.100685 -2.465673 1.122004 :::: 4.728565 0.201129 -2.466795 1.071825
SD 1.385191 0.008765 0.035257 0.050256 :::: 1.134422 0.011305 0.039498 0.062491

ML
Mean 4.414050 0.099564 -2.465366 1.114195 :::: 4.745714 0.199569 -2.467258 1.061235
SD 1.302335 0.008337 0.035032 0.047689 :::: 1.039778 0.010893 0.038043 0.059646

Method True value 4.446145 0.300000 -2.465673 1.172012 :::: 4.446145 0.400000 -2.465673 1.172012

MM
Mean 6.450341 0.320539 -2.469253 1.144823 :::: 5.957557 0.417467 -2.468329 1.075316
SD 2.046180 0.021207 0.046898 0.134499 :::: 1.689577 0.024037 0.056664 0.141014

MCL
Mean 4.777123 0.297896 -2.469253 1.004397 :::: 4.812129 0.397886 -2.468329 0.956567
SD 1.398119 0.014596 0.046898 0.077195 :::: 1.307882 0.015592 0.056664 0.081674

AWML
Mean 4.867030 0.301485 -2.469253 1.024141 :::: 4.938722 0.401530 -2.468329 0.978457
SD 1.147865 0.013025 0.046898 0.071010 :::: 1.154986 0.014138 0.056664 0.076213

ML
Mean 4.943190 0.300428 -2.469217 1.015806 :::: 4.950238 0.401050 -2.467967 0.970743
SD 0.989681 0.012164 0.045083 0.069604 :::: 0.989768 0.013187 0.055837 0.075642

Method True value 4.446145 0.500000 -2.465673 1.172012 :::: 4.446145 0.600000 -2.465673 1.172012

MM
Mean 5.726407 0.514194 -2.470754 1.009054 :::: 5.696879 0.611020 -2.471359 0.948085
SD 1.601530 0.024194 0.063526 0.142505 :::: 1.473072 0.026258 0.079252 0.144096

MCL
Mean 5.298567 0.497599 -2.470754 0.910476 :::: 5.175769 0.599687 -2.471359 0.877655
SD 1.275910 0.016580 0.063526 0.086135 :::: 1.247941 0.015706 0.079252 0.082508

AWML
Mean 4.760709 0.500665 -2.470754 0.932938 :::: 4.540656 0.593493 -2.471359 0.867837
SD 1.101151 0.013744 0.063526 0.072981 :::: 1.137011 0.015748 0.079252 0.078219

ML
Mean 5.069599 0.501704 -2.471067 0.928959 :::: 5.265544 0.604879 -2.471462 0.903227
SD 0.867731 0.014314 0.061942 0.076531 :::: 0.776515 0.015503 0.075429 0.072082

Method True value 4.446145 0.700000 -2.465673 1.172012 :::: 4.446145 0.800000 -2.465673 1.172012

MM
Mean 5.892033 0.708439 -2.468226 0.893418 :::: 6.566816 0.803186 -2.471829 0.825635
SD 1.621508 0.026426 0.092693 0.155205 :::: 1.729948 0.023800 0.112849 0.147738

MCL
Mean 5.608306 0.702819 -2.468226 0.855271 :::: 7.224908 0.813702 -2.471829 0.898949
SD 1.395668 0.019954 0.092693 0.111477 :::: 2.353120 0.026157 0.112849 0.190412

AWML
Mean 4.216008 0.674462 -2.468226 0.771517 :::: 3.341247 0.718672 -2.471829 0.581523
SD 1.106270 0.023748 0.092693 0.082672 :::: 1.086899 0.051058 0.112849 0.112479

ML
Mean 5.529380 0.707212 -2.468218 0.875505 :::: 5.813537 0.807403 -2.468201 0.842374
SD 0.667337 0.016117 0.088656 0.080267 :::: 0.470220 0.015519 0.106023 0.094978
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Table 6: Finite-sample properties of alternative estimation methods for (H,σ, µ, κ) with
various values of H ∈ [0.1, 0.8], n = 500 and ∆ = 1/250.

κ H µ σ :::: κ H µ σ

Method True value 4.446145 0.100000 -2.465673 1.172012 :::: 4.446145 0.200000 -2.465673 1.172012

MM
Mean 4.890346 0.098944 -2.476788 1.255459 :::: 5.600519 0.198973 -2.476219 1.245837
SD 4.648676 0.071484 0.142294 0.498106 :::: 5.033509 0.068318 0.149269 0.474832

MCL
Mean 5.321656 0.085616 -2.476788 1.120797 :::: 5.672349 0.197606 -2.476219 1.174534
SD 4.682424 0.049333 0.142294 0.242316 :::: 4.087221 0.036959 0.149269 0.194905

AWML
Mean 5.376004 0.104625 -2.476788 1.205031 :::: 6.760823 0.206847 -2.476219 1.225128
SD 4.051980 0.019671 0.142294 0.119223 :::: 3.661555 0.025436 0.149269 0.161697

ML
Mean 4.370875 0.098775 -2.476871 1.169990 :::: 4.840050 0.195802 -2.476658 1.151613
SD 1.899732 0.016819 0.128469 0.097643 :::: 1.582566 0.022568 0.129050 0.131427

Method True value 4.446145 0.300000 -2.465673 1.172012 :::: 4.446145 0.400000 -2.465673 1.172012

MM
Mean 6.108450 0.298812 -2.479240 1.236516 :::: 6.418008 0.398458 -2.480264 1.227081
SD 4.626418 0.065207 0.156573 0.454829 :::: 4.248231 0.062580 0.164935 0.436086

MCL
Mean 6.211983 0.300797 -2.479240 1.187773 :::: 6.686706 0.402660 -2.480264 1.202163
SD 3.860853 0.031967 0.156573 0.197988 :::: 3.837283 0.034619 0.164935 0.226809

AWML
Mean 7.356816 0.308567 -2.479240 1.245800 :::: 7.680359 0.409084 -2.480264 1.267572
SD 3.599389 0.028792 0.156573 0.193882 :::: 3.664320 0.030713 0.164935 0.220704

ML
Mean 4.989880 0.293346 -2.480837 1.135453 :::: 5.015213 0.391997 -2.483494 1.125673
SD 1.413288 0.025424 0.153477 0.150430 :::: 1.323559 0.027568 0.163325 0.167783

Method True value 4.446145 0.500000 -2.465673 1.172012 :::: 4.446145 0.600000 -2.465673 1.172012

MM
Mean 6.752937 0.497856 -2.480863 1.218922 :::: 7.203506 0.597288 -2.478460 1.211124
SD 3.969060 0.060020 0.175457 0.430581 :::: 3.937838 0.056607 0.186765 0.426452

MCL
Mean 7.345850 0.505780 -2.480863 1.227848 :::: 8.270592 0.611950 -2.478460 1.286097
SD 4.058504 0.037319 0.175457 0.259587 :::: 4.575060 0.041023 0.186765 0.325562

AWML
Mean 6.689375 0.499791 -2.480863 1.232196 :::: 5.554368 0.574889 -2.478460 1.142277
SD 3.433822 0.025843 0.175457 0.190099 :::: 3.109976 0.032238 0.186765 0.200919

ML
Mean 5.041528 0.490945 -2.486004 1.117037 :::: 5.050404 0.590785 -2.485469 1.113263
SD 1.240879 0.029039 0.169596 0.182116 :::: 1.155138 0.029616 0.174071 0.194905

Method True value 4.446145 0.700000 -2.465673 1.172012 :::: 4.446145 0.800000 -2.465673 1.172012

MM
Mean 7.665527 0.696968 -2.479808 1.211898 :::: 8.467536 0.797285 -2.481418 1.239616
SD 3.834607 0.053985 0.196360 0.441561 :::: 4.009864 0.051876 0.204945 0.531494

MCL
Mean 10.216937 0.725907 -2.479808 1.466824 :::: 14.017574 0.846455 -2.481418 1.861672
SD 6.252785 0.049906 0.196360 0.552863 :::: 7.253496 0.049643 0.204945 0.698690

AWML
Mean 4.833263 0.625256 -2.479808 0.973818 :::: 3.748846 0.632161 -2.481418 0.702181
SD 2.782346 0.046913 0.196360 0.272416 :::: 2.244837 0.041092 0.204945 0.147202

ML
Mean 5.030314 0.691695 -2.487919 1.118168 :::: 4.916638 0.794567 -2.490307 1.145867
SD 1.070439 0.030520 0.178050 0.217682 :::: 1.144566 0.032204 0.179683 0.139612
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Table 7: RMSE by the alternative forecasting methods of fOU for h-day-ahead-forecast.

h 1 2 3 4 5

WXY 0.28198 0.30920 0.39320 0.46225 0.55091
Optimal forecasts 0.20021 0.22527 0.24292 0.26828 0.28951

Theoretical RMSE of the optimal forecast 0.22048 0.26020 0.28081 0.30540 0.32085

Table 8: RMSE by the alternative estimation approaches and forecasting methods of fOU for

h-day-ahead-forecast.

h 1 2 3 4 5

MM+WXY 0.30657 0.32874 0.36024 0.46515 0.51902
MM+optimal forecast 0.25943 0.27560 0.31933 0.33432 0.38616
ML+optimal forecast 0.21918 0.25905 0.27602 0.29334 0.31546

6 Empirical Studies

6.1 Estimation results

We fit the fOU model given in (2.3) to the logarithmic daily RV series for the Standard

and Poor’s (S&P) 500 index exchange-traded fund (ETF) and the nine industry ETFs,

with the tick symbols SPY, XLY, XLP, XLE, XLF, XLV, XLI, XLB, XLK, and XLU.

The sample period is from January 5, 2016, to December 31, 2020. We download the data

from the Risk Lab of Dacheng Xiu.7 The left panel of Table 9 provides the estimation

results for the fOU Model using four different estimation methods: ML, AWML, MM,

and MCL. The estimated H is less than 0.5 in all cases, suggesting all RV series are

rough.8 Interestingly, in most cases, the ML estimate of each parameter takes a value

closer to the AMWL estimates and further away from their MCL and MM counterparts.

The ML estimates of H range from 0.203121 for XLP to 0.260573 for SPY.

We also fit Model (2.3) to the logarithmic daily trading volume series for the same

asset over the same period.9 The results are reported in the right panel of Table 9.

The empirical results are generally similar to what was found for the log RV series. For

example, all estimates of H are much less than 0.5; the point estimates from ML are

close to those from AWML. Moreover, the point estimates of H for volume series are

7https://dachxiu.chicagobooth.edu/\#risklab.
8However, it is important to note that this finding does not necessarily imply that the integrated

volatility (IV) series is rough, for there are estimation errors in RV. Since one of our interests in modeling
RV is to forecast future RV not IV, it is important for us to find a good model for RV for this particular
purpose, as it is typically done in the literature; see, for example, Andersen et al. (2003).

9The trading volume data are downloaded from Yahoo Finance at the daily frequency.
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smaller than those for their RV counterparts — the ML estimates of H range between

0.105369 for XLU and 0.186572 for XLI.

6.2 Forecasting performance of fOU

We now compare the performance of fOU in forecasting RV after it is fitted to the log RV

series by alternative estimation methods: ML, MCL, and MM. When forecasting future

RV, we replace the underlying parameters in fOU with these alternative estimates and

use both the optimal forecasting formula and the forecasting formula of WXY. Then, we

evaluate the forecasting performance of the competing approaches based on RMSE. We

further check the statistical significance between competing methods using the Diebold-

Mariano (DM) test of Diebold and Mariano (1995) and the model confidence set (MCS)

of Hansen et al. (2011), respectively.

We split the sample period into two subperiods: from January 4, 2016, to December

31, 2020, and from January 4, 2021, to December 30, 2022. For each day in the second

period, the fOU model is fitted to observations over the most recent 5 years using

one of three estimation methods (ML, MCL, and MM), then, h-day-ahead (with h =

1, 5) forecasts of daily RVs are obtained using one of the two forecasting formulae.

In total, we have six alternative combinations: (i) the ML estimate together with the

optimal forecasting formula, (ii) the MCL estimate together with the optimal forecasting

formula, (iii) the MM estimate together with the optimal forecasting formula, (iv) the

ML estimate together with the forecasting formula of WXY, (v) the MCL estimate

together with the forecasting formula of WXY, and (vi) the MM estimate together with

the forecasting formula of WXY.

Table 10 reports RMSE from the six combinations above. The best result is high-

lighted in boldface.10 It is evident that the ML estimates together with the optimal

forecasting formula always performs the best.

To investigate if forecasts from the ML estimate together with the optimal forecast-

ing formula are statistically significantly different from those of other methods, Table

11 reports the DM statistic based on the squared forecast errors and the p-value (in

parenthesis) with the benchmark being the ML estimate together with the optimal fore-

casting formula (boldface means statistically significant at the 10% level). According to

the DM test, regardless of forecasting horizons, forecasts by the ML estimate together

with the optimal forecasting formula are statistically different from those by four out

10By Gaussianity of fOU, the h-step-ahead predictor of RVt = exp (Xt) is R̂V t+h =
exp

(
E [Xt+h | Ft] +

1
2
Var [Xt+h | Ft]

)
where F denotes the sigma algebra of X0, X1, . . . , Xt.
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Table 9: Empirical results for ln(RV ) and ln(volume) of SPY, XLY, XLP, XLE, XLF, XLV,

XLI, XLB, XLK and XLU.

Name Method
ln(RV ) ln(volume)

κ H µ σ κ H µ σ

SPY

ML 4.446145 0.260573 -2.465673 1.172012 4.215973 0.157989 0.003779 0.797597
AWML 4.606861 0.253570 -2.462327 1.491415 5.389794 0.166988 0.007365 1.491415
MM 5.823982 0.298035 -2.462327 1.453865 4.175881 0.165010 0.007365 0.824279
MCL 2.577467 0.246340 -2.462327 1.090190 4.357776 0.165575 0.007365 0.829422

XLB

ML 0.966455 0.204695 -2.091105 0.722440 12.728688 0.179482 0.001678 1.114306
AWML 1.038395 0.211580 -2.134613 0.979263 11.446955 0.175527 0.006391 1.092911
MM 1.963080 0.225311 -2.134613 0.810170 16.305692 0.192629 0.006391 1.196384
MCL 1.152012 0.202513 -2.134613 0.715899 16.265946 0.192508 0.006391 1.192435

XLE

ML 2.137154 0.249324 -1.750971 0.751446 0.075829 0.130348 0.098003 0.696664
AWML 1.550811 0.250046 -1.780489 0.869432 4.648608 0.145728 0.019849 0.753164
MM 9.152197 0.383350 -1.780489 1.624795 8.281561 0.255476 0.019849 1.385716
MCL 1.609472 0.215789 -1.780489 0.637802 5.392826 0.151157 0.019849 0.778478

XLF

ML 2.018703 0.222482 -1.952330 0.791754 8.033162 0.167030 0.003403 0.899647
AWML 2.969242 0.233993 -2.044372 1.207683 9.092342 0.170730 0.002399 0.920720
MM 8.361772 0.305953 -2.044372 1.266752 14.813948 0.205067 0.002399 1.106793
MCL 2.385198 0.225746 -2.044372 0.809569 9.153149 0.172800 0.002399 0.928295

XLI

ML 1.459491 0.216333 -2.189787 0.813539 13.149749 0.186572 0.000596 1.064284
AWML 1.709495 0.220056 -2.214138 1.046251 14.454120 0.192757 0.004057 1.101224
MM 1.219409 0.210275 -2.214138 0.785424 17.077446 0.197713 0.004057 1.121563
MCL 1.420062 0.216198 -2.214138 0.813290 22.161701 0.215806 0.004057 1.246909

XLK

ML 1.668544 0.220104 -2.143940 0.940939 9.847038 0.169502 0.000818 0.985028
AWML 2.219921 0.225226 -2.162469 1.218899 8.432843 0.164798 0.000616 0.963668
MM 5.903950 0.276237 -2.162469 1.286163 12.125780 0.187591 0.000616 1.092152
MCL 2.731487 0.229932 -2.162469 0.994593 8.096917 0.164745 0.000616 0.959579

XLP

ML 0.524153 0.203121 -2.331152 0.744684 8.222255 0.141522 0.002616 0.883951
AWML 0.619573 0.212002 2.384502 1.110369 9.101073 0.146887 0.004432 0.908799
MM 0.701563 0.133317 -2.384502 0.502381 17.487814 0.134950 0.004432 0.844310
MCL 0.636387 0.208451 2.384502 0.762438 15.317032 0.171262 0.004432 1.031199

XLU

ML 0.867652 0.218259 -2.021525 0.664237 0.865405 0.105369 -0.033946 0.645621
AWML 0.975011 0.219525 -2.051622 0.939547 7.077768 0.123771 -0.002357 0.710282
MM 0.905570 0.197875 -2.051622 0.595602 21.778640 0.182866 -0.002357 0.975192
MCL 1.204449 0.208877 -2.051622 0.632280 11.383995 0.127858 -0.002357 0.772601

XLV

ML 2.842219 0.225034 -2.245561 0.816055 9.203585 0.165271 -0.000349 0.944645
AWML 2.478489 0.226379 -2.247078 0.976172 9.037310 0.165609 0.004742 0.948439
MM 3.012977 0.239137 -2.247078 0.885550 24.995825 0.238078 0.004742 1.417276
MCL 1.764479 0.213311 -2.247078 0.767777 9.605133 0.166686 0.004742 0.953507

XLY

ML 2.607289 0.223217 -2.269736 0.908920 1.106239 0.121481 0.010246 0.768686
AWML 2.134027 0.223342 -2.279545 1.182996 4.892674 0.133971 0.004820 0.820746
MM 3.850248 0.257546 -2.279545 1.103246 7.493364 0.084882 0.004820 0.623389
MCL 1.930542 0.221440 -2.279545 0.902707 5.534828 0.143275 0.004820 0.857084
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Table 10: RMSE for h-day-ahead-forecast of RV of fOU using three different estimation methods

and two different forecasting methods.

Time series SPY XLB XLE XLF XLI XLK XLP XLU XLV XLY

Panel A: h = 1
MM+WXY 0.3315 0.3241 0.3114 0.3171 0.3001 0.3084 0.3144 0.3131 0.3184 0.3019
MCL+WXY 0.3272 0.3216 0.3054 0.3092 0.2994 0.2947 0.3090 0.3034 0.3107 0.2969
ML+WXY 0.3091 0.2904 0.3005 0.3059 0.2813 0.2867 0.2938 0.2911 0.2919 0.2906

MM+optimal 0.3155 0.3136 0.2931 0.2833 0.2824 0.2809 0.2892 0.2968 0.2917 0.2845
MCL+optimal 0.2973 0.2803 0.2751 0.2695 0.2743 0.2780 0.2657 0.2701 0.2793 0.2779
ML+optimal 0.2905 0.2753 0.2673 0.2634 0.2699 0.2622 0.2516 0.2585 0.2527 0.2598
Panel B: h = 5
MM+WXY 0.3718 0.3693 0.3618 0.3677 0.3675 0.3563 0.3543 0.3596 0.3660 0.3574
MCL+WXY 0.3536 0.3468 0.3490 0.3485 0.3416 0.3358 0.3430 0.3347 0.3309 0.3472
ML+WXY 0.3624 0.3546 0.3521 0.3516 0.3482 0.3391 0.3488 0.3448 0.3521 0.3488

MM+optimal 0.3501 0.3460 0.3483 0.3434 0.3389 0.3317 0.3405 0.3308 0.3343 0.3433
MCL+optimal 0.3456 0.3356 0.3294 0.3327 0.3324 0.3220 0.3342 0.3251 0.3236 0.3397
ML+optimal 0.3342 0.3306 0.3229 0.3246 0.3369 0.3239 0.3245 0.3234 0.3146 0.3287

of five methods for all assets. They are statistically different from the MCL estimate

together with the optimal forecasting formula for two assets.

To determine whether the predictive model belongs to the set of ‘best’ predic-

tive models or not, Table 12 reports the p-value of MSC obtained from 2, 000 boot-

strap iterations with a block length of 12. Values in boldface indicate that the model

belongs to the confidence set of the best models. Moreover, the method with a p-

value smaller than 10% should be removed from the best models’s set. From Table

12, at the 1-day horizon, we can see that MM-estimate-with-the-forecasting-formula-of-

WXY, the MCL-estimate-with-the-forecasting-formula-of-WXY, the ML-estimate-with-

the-forecasting-formula-of-WXY, and the MM-estimate-with-the-optimal-forecasting-formula

are always rejected. The MCL-estimate-with-the-optimal-forecasting-formula is rejected

in one case. Whereas, the ML-estimate-together-with-the-optimal-forecasting-formula is

not rejected in any case. Similar conclusions can be drawn at the 5-day horizon. We

also investigate the performance of alternative methods in forecasting ln(RV ) of these

selected ten ETFs. These results are qualitatively unchanged and are reported in the

Online Supplement.

7 Conclusion

How to estimate fOU has received a great deal of attention in the statistics literature,

where a common assumption is that a continuous record of observations is available. In

recent years, fOU has been found successful in modeling volatility and trading volume.
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Table 11: DM statistic for h-day-ahead-forecast of RV of fOU using three different estimation

methods and two different forecasting methods (the benchmark model is ML with optimal).

Time series SPY XLB XLE XLF XLI XLK XLP XLU XLV XLY

Panel A: h = 1

MM+WXY
-3.5949 -3.2622 -3.6028 -3.7112 -3.2217 -3.1174 -3.2967 -3.3188 -3.4242 -3.5079
(0.0002) (0.0006) (0.0002) (0.0001) (0.0006) (0.0009) (0.0005) (0.0005) (0.0003) (0.0002)

MCL+WXY
-2.8147 -2.9058 -2.7270 -2.9134 -2.6324 -2.6975 -2.2785 -2.5469 -2.9575 -2.9649
(0.0024) (0.0018) (0.0032) (0.0018) (0.0042) (0.0035) (0.0113) (0.0054) (0.0016) (0.0015)

ML+WXY
-1.6576 -1.5286 -2.0572 -1.9854 -2.0430 -1.6419 -1.9218 -1.8138 -2.0244 -1.6369
(0.0487) (0.0632) (0.0198) (0.0236) (0.0205) (0.0503) (0.0273) (0.0349) (0.0215) (0.0508)

MM+optimal
-2.0246 -2.4706 -2.1793 -2.2472 -2.3003 -2.1062 -2.0945 -2.4157 -2.2922 -2.4595
(0.0215) (0.0067) (0.0147) (0.0123) (0.0107) (0.0176) (0.0181) (0.0079) (0.0109) (0.0070)

MCL+optimal
-1.2194 -1.0159 -1.1385 -1.0231 -1.0486 -1.4117 -1.1908 -1.1585 -1.4751 -1.0172
(0.1114) (0.1548) (0.1275) (0.1531) (0.1472) (0.0790) (0.1169) (0.1233) (0.0701) (0.1545)

Panel A: h = 5

MM+WXY
-3.4121 -2.0637 -2.5538 -2.0923 -2.1943 -3.6469 -3.3897 -2.6342 -3.9004 -2.0689
(0.0003) (0.0195) (0.0053) (0.0182) (0.0141) (0.0001) (0.0003) (0.0042) (0.0000) (0.0193)

MCL+WXY
-2.4387 -1.9650 -2.1655 -1.9952 -2.1869 -2.4898 -2.4456 -2.6063 -2.7094 -1.8547
(0.0074) (0.0247) (0.0152) (0.0230) (0.0144) (0.0064) (0.0072) (0.0046) (0.0034) (0.0318)

ML+WXY
-1.8407 -1.5243 -1.8143 -1.2435 -1.9293 -1.3500 -1.9166 -1.5211 -1.6160 -1.4733
(0.0328) (0.0637) (0.0348) (0.1068) (0.0268) (0.0885) (0.0276) (0.0641) (0.0530) (0.0703)

MM+optimal
-2.2513 -1.7551 -2.0060 -1.8352 -1.9869 -2.4593 -2.0472 -1.6386 -1.6493 -1.7575
(0.0122) (0.0396) (0.0224) (0.0332) (0.0235) (0.0070) (0.0203) (0.0506) (0.0495) (0.0394)

MCL+optimal
-1.1510 -1.3187 -1.0636 -1.0923 -1.0509 -1.0476 -1.3043 -1.2029 -1.1925 -1.0507
(0.1249) (0.0936) (0.1437) (0.1373) (0.1466) (0.1474) (0.0961) (0.1145) (0.1165) (0.1467)

However, like most economic and financial variables, volatility and trading volume are

measured at discrete time points. As a result, estimating fOU with a discrete sample

becomes a new research focus in the fOU literature.

In the present paper, we first derive two analytical formulae for the autocovariance

function of discretely sampled observations from fOU. These formulae facilitate calculat-

ing the likelihood function, the ML estimates, and the optimal forecast formula proposed

in the paper in terms of accuracy and computational cost. Applying the derived ana-

lytical formula, we investigate how well the Whittle likelihood can approximate the true

likelihood. Under empirically realistic settings, it is shown that the Whittle approxima-

tion can be far away from the exact likelihood function, especially when the sample size

is small, say 500, or when H is large. Therefore, the AWML estimator for the parameters

in fOU studied by Shi et al. (2024) may have a poor finite sample performance, although

is asymptotic efficient. The MM and MCL estimators proposed in the literature are not

efficient, for only using limit information of the likelihood function.

We, therefore, propose using the exact ML method to estimate the parameters in fOU

and develop a long-span asymptotic theory for the ML estimator. Unlike the existing

estimation approaches where the location parameter µ is estimated separately from other
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Table 12: p-values of MSC for h-day-ahead-forecast of RV of fOU using three different estimation

methods and two different forecasting methods (the benchmark model is ML with optimal).

Time series SPY XLB XLE XLF XLI XLK XLP XLU XLV XLY

Panel A: h = 1

MM+WXY 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MCL+WXY 0.0178 0.0139 0.0124 0.0140 0.0110 0.0113 0.0194 0.0196 0.0158 0.0106
ML+WXY 0.0429 0.0976 0.1321 0.0715 0.0843 0.0669 0.1149 0.0711 0.0448 0.0951

MM+optimal 0.0735 0.0853 0.0687 0.0636 0.0647 0.0506 0.0709 0.0232 0.0218 0.0695
MCL+optimal 0.2392 0.1893 0.2404 0.2567 0.1833 0.1676 0.1945 0.1978 0.0936 0.1262
ML+optimal 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Panel B: h = 5

MM+WXY 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MCL+WXY 0.0143 0.0231 0.0501 0.0115 0.0364 0.0465 0.0344 0.0389 0.0219 0.0309
ML+WXY 0.0628 0.0768 0.1121 0.0831 0.0843 0.0618 0.1185 0.0999 0.0850 0.0830

MM+optimal 0.0330 0.0341 0.0821 0.0336 0.0561 0.0548 0.0709 0.0709 0.0661 0.0375
MCL+optimal 0.2489 0.2278 0.2959 0.2473 0.2700 0.2181 0.2149 0.2738 0.1625 0.1700
ML+optimal 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

parameters, the ML approach simultaneously estimates µ and other parameters in fOU.

It has been proved that the ML estimator is consistent and has asymptotic normality

for all values of H ∈ (0, 1), with the convergence rate and the asymptotic variance

being continuous functions of H. This feature facilitates statistical inference and is in

sharp contrast with the asymptotics of the MM and MCL estimators, whose asymptotic

theories have a jump at the point of H = 3/4.

Simulations are performed to demonstrate the feasibility and effectiveness of the ML

estimation approach and the optimal forecast formula proposed when a discrete sample is

available. Simulation results show that the ML method outperforms the MM, MCL, and

AWML methods in finite samples, and the proposed optimal forecast formula performs

better than the other forecasting methods applied in the literature.

When fitting the fOU process to the RV and trading volume series of ten ETFs,

strong evidence of H < 0.5 is found. Moreover, empirical studies also show that forecasts

generated using the optimal forecasting formula with parameter estimates from the ML

approach are significantly more accurate than those generated using combinations of

other forecasting formulas and estimation methods.

In practice, we suggest empirical researchers to first use MCL or AWML or even MM

methods to obtain initial estimates of parameters in fOU. Then our exact ML method is

used to the final estimates of all four parameters in fOU. When implementing the exact

ML method, the MCL or AWML or MM estimates can serve as the initial value during
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the numerical optimization.

There is much room for future research. First, our results focus on the stationary

fOU process. The exact ML estimator for the explosive fOU process has not been

investigated. We plan to pursue this line of research in future work. Second, this paper

considers the univariate Gaussian fOU process. It is worthwhile to consider relaxing

the Gaussianity assumption and extending the results to the multivariate case. Both

generalizations seem rather complicated. Third, investigating the finite sample bias of

the ML estimators would be meaningful work.

8 Appendix

Proof of Lemma 2.1: (a) Let us first prove (2.12). Let X0 = µ+σ
∫ 0
−∞ eκsdBH

s , which

has the distribution of N
(
µ, σ2HΓ (2H) /κ2H

)
when κ < 0. Then the fOU process

defined in (2.3) has the following discretization

Xt−µ = e−κt (X0 − µ)+σ

∫ t

0
e−κ(t−s)dBH

s = e−κt (X0 − µ)+σBH
t −κσe−κt

∫ t

0
eκsBH

s ds,

where the second equation is obtained by using integration by parts.

Let X̃t = Xt − µ, St = σBH
t − κσe−κt

∫ t
0 e

κsBH
s ds. It is straightforward to get that

X̃t = e−κtX̃0 + St , (8.1)

and

Cov (Xt, Xs) = Cov
(
X̃t, X̃s

)
=Cov (St, Ss ) + e−κtCov

(
X̃0, Ss

)
+ e−κsCov

(
St, X̃0

)
+ e−κ(t+s)Var

(
X̃0

)
. (8.2)

As {Xt} is a covariance stationary process when κ < 0, without losing generality, we

only derive the expression of Cov (Xt, Xs) for s < t. From (2.2), we have

Cov(St, Ss) = E
[(

−κσe−κt

∫ t

0
eκuBH

u du+ σBH
t

)(
−κσe−κs

∫ s

0
eκvBH

v dv + σBH
s

)]
=

σ2

2

10∑
n=1

In,

where

I1 = −κe−κt

∫ t

0
eκus2Hdu, I2 = −κe−κt

∫ t

0
eκuu2Hdu, I3 = κe−κt

∫ t

0
eκu|u− s|2Hdu,
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I4 = −κe−κs

∫ s

0
eκvt2Hdv, I5 = −κe−κs

∫ s

0
eκvv2Hdv, I6 = κe−κs

∫ s

0
eκv(t− v)2Hdv,

I7 = t2H + s2H − (t− s)2H , I8 = κ2e−κ(t+s)

∫ t

0
eκvdv

∫ s

0
eκuu2Hdu,

I9 = κ2e−κ(t+s)

∫ s

0
eκudu

∫ t

0
eκvv2Hdv,

I10 = −κ2e−κ(t+s)

∫ t

0

∫ s

0
eκ(u+v)|u− v|2H du dv.

It is easy to get

I1 = s2H
(
e−κt − 1

)
and I2 = −t2H + 2He−κt

∫ t

0
eκuu2H−1du.

Using the change-of-variable technique by letting z = |s− u|, we can have

I3 =κe−κt

(∫ s

0
eκu(s− u)2Hdu+

∫ t

s
eκu(u− s)2Hdu

)
=κe−κt+κs

(∫ s

0
e−κzz2Hdz +

∫ t−s

0
eκzz2Hdz

)
=− e−κt+κs

(
e−κss2H − 2H

∫ s

0
e−κzz2H−1dz − eκ(t−s)(t− s)2H

+ 2H

∫ t−s

0
eκzz2H−1dz

)
=− e−κts2H + (t− s)2H + 2He−κt+κs

(∫ s

0
e−κzz2H−1dz −

∫ t−s

0
eκzz2H−1dz

)
.

Similarly, simple calculations with the usage of the change-of-variable technique and

integration by parts yield the results of

I4 = t2H
(
e−κs − 1

)
,

I5 = −s2H + 2He−κs

∫ s

0
eκvv2H−1dv,

I6 = −e−κst2H + (t− s)2H + 2He−κs+κt

∫ t

t−s
e−κzz2H−1dz,

I8 = (1− e−κt)s2H − 2He−κs(1− e−κt)

∫ s

0
eκuu2H−1du,

I9 = (1− e−κs)t2H − 2He−κt(1− e−κs)

∫ t

0
eκvv2H−1dv.

To calculate the term I10 that involves a double integral, we first get

I10 = −κ2e−κ(t+s)

(∫ s

0

∫ s

0
eκ(u+v) |u− v|2H du dv +

∫ t

s

∫ s

0
eκ(u+v)(v − u)2H du dv

)
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= −κ2e−κ(t+s)

(
2

∫ s

0

∫ v

0
eκ(u+v)(v − u)2H du dv +

∫ t

s

∫ s

0
eκ(u+v)(v − u)2H du dv

)
= I

(1)
10 + I

(2)
10 .

where I
(1)
10 ≡ −2κ2e−κ(t+s)

∫ s
0

∫ v
0 eκ(u+v)(v−u)2H du dv and I

(2)
10 ≡ −κ2e−κ(t+s)

∫ t
s

∫ s
0 eκ(u+v)(v−

u)2H du dv. Letting z = v − u, it has

I
(1)
10 = −2κ2e−κ(t+s)

∫ s

0

∫ v

0
e2κve−κzz2Hdzdv

= −2κ2e−κ(t+s)

∫ s

0

∫ s

z
e2κve−κzz2Hdvdz

= −2κ2e−κ(t+s)

∫ s

0
e−κzz2H

e2κs − e2κz

2κ
dz

= −κe−κ(t+s)

(
e2κs

∫ s

0
e−κzz2Hdz −

∫ s

0
eκzz2Hdz

)
= 2e−κts2H − 2He−κ(t−s)

∫ s

0
e−κzz2H−1dz − 2He−κ(t+s)

∫ s

0
eκzz2H−1dz,

where the second equation is obtained by changing the order of the integration. To

simplify I
(2)
10 , we derive the result under the condition of t > 2s. The same result can be

obtained when s < t < 2s by taking the same procedure with some tedious calculations,

which we omit here for simplicity. Again, by letting z = v − u, it has

I
(2)
10 = −κ2e−κ(t+s)

∫ t

s

∫ v

v−s
e−κz+2κvz2Hdzdv

= −κ2e−κ(t+s)

{(∫ s

0

∫ z+s

s
+

∫ t−s

s

∫ z+s

z
+

∫ t

t−s

∫ t

z

)
e−κz+2κvz2Hdvdz

}
= −κ2e−κt−κs

(∫ s

0
e−κzz2H

e2κ(z+s) − e2κs

2κ
dz

+

∫ t−s

s
e−κzz2H

e2κ(z+s) − e2κz

2κ
dz +

∫ t

t−s
e−κzz2H

e2κt − e2κz

2κ
dz

)

= −κ

2
e−κ(t−s)

∫ t−s

0
eκzz2Hdz +

κ

2
e−κ(t+s)

∫ t

s
eκzz2Hdz

+
κ

2
e−κ(t−s)

∫ s

0
e−κzz2Hdz − κ

2
eκ(t−s)

∫ t

t−s
e−κzz2Hdz

= e−κst2H − e−κts2H −He−κs+κt

∫ t

t−s
e−κzz2H−1dz +He−κt+κs

∫ s

0
e−κzz2H−1dz

−He−κt−κs

∫ t

s
eκzz2H−1dz +He−κt+κs

∫ t−s

0
eκzz2H−1dz − (t− s)2H .
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where the second equation is from changing the order of the integration. Finally, we get

Cov(St, Ss) =
σ2

2

10∑
n=1

In

=
Hσ2

2

(
−e−κ(t−s)

∫ t−s

0
eκzz2H−1dz + eκ(t−s)

∫ t

t−s
e−κzz2H−1dz

− e−κ(t+s)

∫ t

s
eκzz2H−1dz + e−κ(t−s)

∫ s

0
e−κzz2H−1dz

+2e−κ(t+s)

∫ t

0
eκzz2H−1dz

)
. (8.3)

By taking a similar procedure as above, we can derive

Cov
(
St, X̃0

)
=

Hσ2

2

(
−Γ(2H)

κ2H
e−κt − e−κt

∫ t

0
eκzz2H−1dz + eκt

∫ ∞

t
e−κzz2H−1dz

)
,

Cov
(
Ss, X̃0

)
=

Hσ2

2

(
−Γ(2H)

κ2H
e−κs − e−κs

∫ s

0
eκzz2H−1dz + eκs

∫ ∞

s
e−κzz2H−1dz

)
,

Var
(
X̃0

)
=

σ2HΓ(2H)

κ2H
.

Substituting the formulae of Cov(St, Ss), Cov
(
St, X̃0

)
, Cov

(
Ss, X̃0

)
, and Var

(
X̃0

)
derived above into Equation (8.2), together with the result of

∫∞
0 e−κzz2H−1dz = Γ(2H)

κ2H ,

we can have

Cov (Xt, Xs) = A1 +A2 +A3, (8.4)

where

A1 =
Hσ2Γ(2H)

2κ2H
e−κ(t−s) ,

A2 = −Hσ2

2
e−κ(t−s)

∫ t−s

0
eκzz2H−1dz ,

A3 =
Hσ2

2
eκ(t−s)

∫ +∞

t−s
e−κzz2H−1dz .

Letting x = κz, we then have

A2 =− Hσ2e−κ(t−s)

2κ2H

∫ κ(t−s)

0
exx2H−1dx

=− Hσ2e−κ(t−s) (κ (t− s))2H

2κ2H
B (1, 2H) 1F1 (2H; 1 + 2H;κ (t− s))

=− Hσ2e−κ(t−s) (κ (t− s))2H

2κ2H
1

2H
1F1 (2H; 1 + 2H;κ (t− s)) , (8.5)
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where the second equation comes from Gradshteyn and Ryzhik (2007) (see, Eq ET II

187(14) of 3.383 on page 347)∫ u

0
xν−1(u− x)µ−1eβxdx = B(µ, ν)uµ+ν−1

1F1(ν;µ+ ν;βu) , (8.6)

with B(·, ·) and 1F1 (·; ·; ·) denoting the Beta function and the confluent hypergeometric

function of the first kind, and the third equation is from

B (1, 2H) =
Γ (1) Γ (2H)

Γ (2H + 1)
=

1

2H
.

Similarly, by letting x = κz, we get

A3 =
Hσ2eκ(t−s)

2κ2H

∫ +∞

κ(t−s)
e−xx2H−1dx =

Hσ2eκ(t−s)

2κ2H
Γ(2H,κ(t− s)) . (8.7)

where Γ(·, ·) is the upper incomplete Gamma function.

Finally, substituting (8.5) and (8.7) into (8.4), we can have

Cov (Xt, Xs) =A1 +A2 +A3

=
Hσ2e−κ(t−s)

2κ2H

[
Γ(2H)− (κ(t− s))2H

2H
1F1(2H; 1 + 2H;κ(t− s))

+ e2κ(t−s)Γ(2H,κ(t− s))

]
. (8.8)

Replacing t and s in Equation (8.8) with (t+ j)∆ and t∆, respectively, the analytical

expression in (2.12) is obtained.

(b): First, it is easy to verify that

Γ (2H;κj∆) = Γ(2H)−
∫ κj∆

0
t2H−1e−tdt = Γ(2H)− (κj∆)2H

∫ 1

0
s2H−1e−κj∆sds

= Γ(2H)− (κj∆)2H

2H
1F1(2H; 2H + 1;−κj∆) , (8.9)

where the second equation is obtained by letting t = κj∆s and the third equation comes

from the definition of the 1F1 function.

Using (8.9), we can have

Cov
(
Xt∆, X(t+j)∆

)
=
Hσ2e−κj∆

2κ2H

{
Γ(2H)− (κj∆)2H

2H
1F1(2H; 2H + 1;κj∆)

e2κj∆Γ(2H)− e2κj∆
(κj∆)2H

2H
1F1(2H; 2H + 1;−κj∆)

}
. (8.10)
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Moreover, by letting s = 1− t and using the definition of the 1F1 function, it is easy

to show that

1F1(2H; 2H + 1;κj∆) = 2H

∫ 1

0
t2H−1eκj∆tdt = 2Heκj∆

∫ 1

0
(1− s)2H−1 e−κj∆sds

= eκj∆1F1(1; 2H + 1;−κj∆) . (8.11)

Similarly, we can prove that

1F1(2H; 2H + 1;−κj∆) = e−κj∆
1F1(1; 2H + 1;κj∆) . (8.12)

Substituting (8.11) and (8.12) into (8.10), we can rewrite Cov
(
Xt∆, X(t+j)∆

)
as

Cov
(
Xt∆, X(t+j)∆

)
=
Hσ2

κ2H

{
e−κj∆ + eκj∆

2
Γ(2H)

−(κj∆)2H

2H
[1F1(1; 2H + 1;−κj∆)+ 1F1(1; 2H + 1;κj∆)]

}
.

(8.13)

Moreover, using the well-known result of 1F1(a; b; z) =
∑∞

n=0
(a)n
(b)n

zn

n! , we can obtain

the following results

1F1(1; 2H + 1;−κj∆) =

∞∑
n=0

(1)n
(2H + 1)n

(−κj∆)n

n!
=

∞∑
n=0

Γ(2H + 1)

Γ(2H + 1 + n)
(−κj∆)n ,

(8.14)

and

1F1(1; 2H + 1;κj∆) =
∞∑
n=0

Γ(2H + 1)

Γ(2H + 1 + n)
(κj∆)n , (8.15)

where (2H + 1)n = (2H + 1) (2H + 2) · · · (2H + n) = Γ(2H+1+n)
Γ(2H+1) .

Therefore, using (8.14) and (8.15), we have

1F1(1; 2H + 1;−κj∆)+ 1F1(1; 2H + 1;κj∆)

=2

∞∑
n=0

Γ(2H + 1)

Γ(2H + 1 + 2n)
(κj∆)2n

=2

∞∑
n=0

Γ(H + 1/2)Γ(H + 1)

Γ(H + n+ 1/2)Γ(H + n+ 1)

(
κ2 (j∆)2

4

)n

=21F2(1;H + 1/2, H + 1;
1

4
κ2 (j∆)2 ) , (8.16)
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where the second equation is obtained by using Γ (2x) = 22x−1
√
π

Γ (x) Γ
(
x+ 1

2

)
(see, Grad-

shteyn and Ryzhik, 2007, Eq. (8.335.1)) and the third equation comes from the definition

of the generalized hypergeometric function 1F2 as

1F2(1;H + 1/2, H + 1;
1

4
κ2 (j∆)2 )

=

∞∑
n=0

(1)n
(H + 1/2)n (H + 1)n

1

n!

(
κ2 (j∆)2

4

)n

=
∞∑
n=0

(
κ2 (j∆)2 /4

)n
[(H + 1/2) · · · (H + 1/2 + n− 1)] [(H + 1) · · · (H + 1 + n− 1)]

=
∞∑
n=0

Γ(H + 1/2)Γ(H + 1)

Γ(H + n+ 1/2)Γ(H + n+ 1)

(
κ2 (j∆)2

4

)n

.

Finally, using (8.13) and (8.16), we get that the covariance function given in (2.14).

This completes the proof of Lemma 2.1.

Proof of Theorem 4.1: The fOU process {Xj∆} is a short-memory stationary

process when 0 < H ≤ 0.5. The asymptotic properties of the ML estimate for short

stationary processes have been well established in the literature; see, e.g., Hannan (1973).

Hence, we focus on the proof for the long-memory case where 0.5 < H < 1.

Define Fn (θ) ≡ −l′′n(θ), minus one multiplying the second-order derivative of the

log-likelihood function ln(θ) defined in (4.1) with respect to the parameter vector θ =

(µ, σ2, κ,H)⊤. Let An(θ) = diag(n1−H ,
√
n,

√
n,

√
n). Sweeting (1980) proves that the

ML estimate θ̂ML has asymptotic normality as

An (θ)
(
θ̂ML − θ

)
d→ N

(
0, I−1 (θ)

)
, (8.17)

if the following two conditions are satisfied:

(C1) When n → ∞, it has

In (θ) ≡ {An (θ)}−1Fn (θ)
[
{An (θ)}−1

]⊤ p→ I (θ) , (8.18)

where I (θ) is a positive definite matrix with probability one.

(C2) For all c > 0, it has

sup
∥∥∥{An (θ)}−1An (θ

∗)− I4

∥∥∥ p→ 0 , (8.19)

where I4 is the 4 × 4 identity matrix, the sup is over the set
∥∥∥{An (θ)}⊤ (θ∗ − θ)

∥∥∥ ≤ c

with ∥·∥ denoting the Euclidean norm of a matrix, and

sup

∥∥∥∥{An (θ)}−1 [Fn (Θ)−Fn (θ)]
[
{An (θ)}−1

]⊤∥∥∥∥ p→ 0 , (8.20)
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where Fn (Θ) is defined as Fn with row i evaluated at θ∗i , for i = 1, 2, 3, 4, and the sup

is over the set
∥∥∥{An (θ)}⊤ (θ∗i − θ)

∥∥∥ ≤ c.

To prove the two conditions above being satisfied for the fOU process with 0.5 <

H < 1, we first list some asymptotic properties of the Toeplitz matrice σ2Σ, which

will be frequently applied later. For each δ > 0 with a constant K independent of

β = (σ2, κ,H)⊤ and n, as n → ∞, it has

n2H−2
(
1⊤Σ−11

)
→ B (3/2−H, 3/2−H)

Γ (2− 2H)

κ2

C (H)∆2H−2
, (8.21)

1⊤Σ−1∂Σ

∂κ
Σ−1∂Σ

∂κ
Σ−11≤K · n2−2H+δ , (8.22)

1⊤Σ−1 ∂Σ

∂H
Σ−1 ∂Σ

∂H
Σ−11≤K · n2−2H+δ , (8.23)

1⊤Σ−1 ∂2Σ

∂κ∂κ
Σ−11≤K · n2−2H+δ , (8.24)

where the first limit can be obtained from Theorem 5.2 in Adenstedt (1974), and the

other three inequalities come from Lemma 5.4 (d) in Dahlhaus (1989).

We start from proving the condition (C1). Consider the elements in the first row of

In (θ), i.e., −
(
∂2ln(θ)
∂µ∂µ , ∂

2ln(θ)
∂σ2∂µ

, ∂
2ln(θ)
∂κ∂µ , ∂

2ln(θ)
∂H∂µ

)
. When n → ∞, using (8.21), we have

−n2H−2∂
2ln(θ)

∂µ∂µ
= n2H−2 1

σ2
1⊤Σ−11 → B (3/2−H, 3/2−H)

Γ (2− 2H)

κ2

σ2C (H)∆2H−2
, (8.25)

and

−nH−3/2∂
2ln(θ)

∂σ2∂µ
= nH−3/2 1

σ4
1⊤Σ−1 (X− µ1)

p→ 0 , (8.26)

where the last limit comes from the fact that
E
(
nH−3/2∂

2ln(θ)

∂σ2∂µ

)
= 0,

Var

(
nH−3/2∂

2ln(θ)

∂σ2∂µ

)
= n2H−3 1

σ8
1⊤Σ−11 = n2H−3 1

σ8
n2−2H → 0,

as n → ∞.

Moreover, as n → ∞, using (8.22), we also have

−nH−3/2∂
2ln(θ)

∂κ∂µ
= −nH−3/2 1

σ2
1⊤

∂Σ−1

∂κ
(X− µ1)

= nH−3/2 1

σ2
1⊤Σ−1∂Σ

∂κ
Σ−1 (X− µ1)

p→ 0, (8.27)

because

E
(
nH−3/2∂

2ln(θ)

∂κ∂µ

)
= 0, Var

(
nH−3/2∂

2ln(θ)

∂κ∂µ

)
= n2H−3 1

σ4
1⊤Σ−1∂Σ

∂κ
Σ−1∂Σ

∂κ
Σ−11 → 0.
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Similarly, as n → ∞, it can be proved that

−nH−3/2∂
2ln(θ)

∂H∂µ

p→ 0 . (8.28)

From A.2, we can see that f∆
X (λ;β) satisfies the Assumption 2.1 of Cohen et al.

(2013). Hence, for the other elements in the matrix In (θ), by using Lemma 2.6 in

Cohen et al. (2013), as n → ∞, it is easy to get

−


1√
n

0 0

0 1√
n

0

0 0 1√
n




∂2ℓn(θ)
∂σ2∂σ2

∂2ℓn(θ)
∂σ2∂κ

∂2ℓn(θ)
∂σ2∂H

∂2ℓn(θ)
∂σ2∂κ

∂2ℓn(θ)
∂κ∂κ

∂2ℓn(θ)
∂H∂κ

∂2ℓn(θ)
∂σ2∂H

∂2ℓn(θ)
∂κ∂H

∂2ℓn(θ)
∂H∂H




1√
n

0 0

0 1√
n

0

0 0 1√
n


p→ 1

4π

∫ π

−π

(
∇ ln f∆

X (λ;β)
) (

∇ ln f∆
X (λ;β)

)⊤
dλ . (8.29)

Therefore, using (8.25)–(8.29), we can obtain that the condition (C1) is satisfied as

In (θ)
p→ I (θ) =

(
B(3/2−H,3/2−H)

Γ(2−2H)
κ2

σ2C(H)∆2H−2 0

0 1
4π

∫ π
−π

[
∇ ln f∆

X (λ;β)
] [
∇ ln f∆

X (λ;β)
]⊤

dλ

)
.

To prove the first part of the condition (C2), note that the set over which the sup is

sought is∥∥∥{An (θ)}⊤ (θ∗ − θ)
∥∥∥

=

√
n2−2H (µ∗ − µ)2 + n (σ2∗ − σ2)2 + n (κ∗ − κ)2 + n (H∗ −H)2 ≤ c . (8.30)

Using (8.30), we have n (H∗ −H)2 → 0, as n → ∞. Therefore, it has

log
(
nH−H∗

)
= (H −H∗) log (n) → 0 and nH−H∗ → 1 .

As a result, for any θ∗ in the set of
∥∥∥{An (θ)}⊤ (θ∗ − θ)

∥∥∥ ≤ c, using (8.30), as n → ∞,

we obtain ∥∥∥{An (θ)}−1An (θ
∗)− I4

∥∥∥ =
∥∥∥diag (nH−H∗ − 1, 0, 0, 0

)∥∥∥→ 0 .

Therefore, (8.19) follows and the first part of the condition (C2) is proved.

We now turn to prove the second part of the condition (C2), i.e., (8.20). Let us first

consider the elements in the first row of the matrix {An (θ)}−1 [Fn (Θ)−Fn (θ)]
[
{An (θ)}−1

]⊤
,

i.e., (
n2H−2 ∂

2ln(θ)
∂µ∂µ nH−3/2 ∂

2ln(θ)
∂σ2∂µ

nH−3/2 ∂
2ln(θ)
∂κ∂µ nH−3/2 ∂

2ln(θ)
∂H∂µ

)
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−
(
n2H−2 ∂

2ln(θ∗1)
∂µ∂µ nH−3/2 ∂

2ln(θ∗1)
∂σ2∂µ

nH−3/2 ∂
2ln(θ∗1)
∂κ∂µ nH−3/2 ∂

2ln(θ∗1)
∂H∂µ

)
, (8.31)

where θ∗1 satisfies
∥∥∥{An (θ)}⊤ (θ∗1 − θ)

∥∥∥ ≤ c.

When n → ∞, it has

n2H−2

[
∂2ln(θ)

∂µ∂µ
− ∂2ln(θ

∗
1)

∂µ∂µ

]
= n2H−2

(
1

σ2
1⊤Σ−11− 1

σ2
1⊤Σ−11

∣∣∣∣
θ=θ∗1

)
→ 0 , (8.32)

where the last limit comes from the facts of the continuity of 1
2σ21

⊤Σ−11
∣∣
θ=θ∗1

when θ∗1

goes to the true value of the parameter and n2H−2 1
σ21

⊤Σ−11 =O (1) as n → ∞.

With (8.26) and the fact of X−µ∗
11 = (X− µ1)+(µ−µ∗

1)1, as n → ∞, we can have

− nH−3/2∂
2ln(θ

∗
1)

∂σ2∂µ

=nH−3/2

(
1

σ4
1⊤Σ−1

∣∣∣∣
θ=θ∗1

(X− µ∗
11)

)

=nH−3/2

([
1

σ4
1⊤Σ−1

∣∣∣∣
θ=θ∗1

]
(X− µ1) +

[
1

σ4
1⊤Σ−11

∣∣∣∣
θ=θ∗1

]
(µ−µ∗

1)

)

=nH−3/2

[
1

σ4
1⊤Σ−1

∣∣∣∣
θ=θ∗1

]
(X− µ1) + nH−3/2

[
1

σ4
1⊤Σ−11

∣∣∣∣
θ=θ∗1

]
(µ−µ∗

1)

p→0 , (8.33)

where the first limit can be obtained from the results of

Var

(
nH−3/2

[
1

σ4
1⊤Σ−1

∣∣∣∣
θ=θ∗1

]
(X− µ1)

)
= n2H−3

[
1

σ4
1⊤Σ−1

∣∣∣∣
θ=θ∗1

]
· σ2Σ ·

[
1

σ4
1⊤Σ−1

∣∣∣∣
θ=θ∗1

]⊤
= n−1

[
n2H−2 1

σ6
1⊤Σ−11⊤ + o (1)

]
= O

(
n−1

)
,

and the second limit follows from

nH−3/2

[
1

σ4
1⊤Σ−11

∣∣∣∣
θ=θ∗1

]
(µ−µ∗

1) =n2H−2

[
1

σ4
1⊤Σ−11

∣∣∣∣
θ=θ∗1

]{
n1−H (µ−µ∗

1)
}
n−1/2 = o

(
n−1/2

)
.

Therefore, using (8.26) and (8.33), as n → ∞, we get

nH−3/2

(
∂2ln(θ)

∂σ2∂µ
− ∂2ln(θ

∗
1)

∂σ2∂µ

)
p→ 0 . (8.34)

Similarly, as n → ∞, it can be proved that

nH−3/2

(
∂2ln(θ)

∂κ∂µ
− ∂2ln(θ

∗
1)

∂κ∂µ

)
p→ 0 , nH−3/2

(
∂2ln(θ)

∂H∂µ
− ∂2ln(θ

∗
1)

∂H∂µ

)
p→ 0 . (8.35)
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Using (8.32), (8.34), and (8.35), we can see that the elements in the first row of the

matrix, {An (θ)}−1 [Fn (Θ)−Fn (θ)]
[
{An (θ)}−1

]⊤
, converge to zero in probability as

n → ∞. By applying the same procedure above, the elements in the first column of the

matrix {An (θ)}−1 [Fn (Θ)−Fn (θ)]
[
{An (θ)}−1

]⊤
, can be proved to converge to zero in

probability as n → ∞.

Now, consider the other elements of {An (θ)}−1 [Fn (Θ)−Fn (θ)]
[
{An (θ)}−1

]⊤
, i.e.,

1

n




∂2ℓn(θ∗2)
∂σ2∂σ2

∂2ℓn(θ∗2)
∂σ2∂κ

∂2ℓn(θ∗2)
∂σ2∂H

∂2ℓn(θ∗3)
∂σ2∂κ

∂2ℓn(θ∗3)
∂κ∂κ

∂2ℓn(θ∗3)
∂H∂κ

∂2ℓn(θ∗4)
∂σ2∂H

∂2ℓn(θ∗4)
∂κ∂H

∂2ℓn(θ∗4)
∂H∂H

−


∂2ℓn(θ)
∂σ2∂σ2

∂2ℓn(θ)
∂σ2∂κ

∂2ℓn(θ)
∂σ2∂H

∂2ℓn(θ)
∂σ2∂κ

∂2ℓn(θ)
∂κ∂κ

∂2ℓn(θ)
∂H∂κ

∂2ℓn(θ)
∂σ2∂H

∂2ℓn(θ)
∂κ∂H

∂2ℓn(θ)
∂H∂H


 , (8.36)

where
∥∥∥{An (θ)}⊤ (θ∗i − θ)

∥∥∥ ≤ c, for i = 2, 3, 4. Denote

X̃ ≡ X− µ1, θ∗i ≡ (µ∗
i , β

∗
i )

′ with β∗
i := (σ2∗

i , κ∗i , H
∗
i )

′,

where µ is the true value of the location parameter, making X̃ to have a zero mean.

Using the relationship between X̃ and X, we can obtain

(X− µ∗
i1)

⊤Σ−1 (X− µ∗
i1) = (X− µ1+ µ1− µ∗

i1)
⊤Σ−1 (X− µ1+ µ1− µ∗

i1)

=X̃⊤Σ−1X̃+ 2 (µ− µ∗
i )1

⊤Σ−1X̃+ (µ− µ∗
i )

2 1⊤Σ−11,

and

ln(θ)|θ=θ∗i
=

{
−1

2
ln
∣∣σ2Σ

∣∣− 1

2σ2
(X− µ1)⊤Σ−1 (X− µ1)

}∣∣∣∣
θ=θ∗i

=

{
−1

2
ln
∣∣σ2Σ

∣∣− 1

2σ2
X̃⊤Σ−1X̃

}∣∣∣∣
β=β∗

i

−
{

1

2σ2

[
2 (µ− µ∗

i )1
⊤Σ−1X̃+ (µ− µ∗

i )
2 1⊤Σ−11

]}∣∣∣∣
β=β∗

i

= ln(β)|β=β∗
i
+ Gn(β)|β=β∗

i
, (8.37)

with

ln(β)|β=β∗
i
≡
{
−1

2
ln
∣∣σ2Σ

∣∣− 1

2σ2
X̃⊤Σ−1X̃

}∣∣∣∣
β=β∗

i

,

Gn(β)|β=β∗
i
= −

{
1

2σ2

[
2 (µ− µ∗

i )1
⊤Σ−1X̃+ (µ− µ∗

i )
2 1⊤Σ−11

]}∣∣∣∣
β=β∗

i

.

From (8.37), we can see that the difference of the second-order derivatives of the

log-likelihood function ℓn (·) at different points can be rewritten as

∂2ℓn (θ
∗
i )

∂ · ∂·
− ∂2ℓn (θ)

∂ · ∂·
=

∂2ℓn (β
∗
i )

∂ · ∂·
− ∂2ℓn (β)

∂ · ∂·
+

∂2Gn (β
∗
i )

∂ · ∂·
− ∂2Gn (β)

∂ · ∂·
. (8.38)
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Therefore, using (8.36) and (8.38), can we simplize the matrix expression as

1

n




∂2ℓn(θ∗2)
∂σ2∂σ2

∂2ℓn(θ∗2)
∂σ2∂κ

∂2ℓn(θ∗2)
∂σ2∂H

∂2ℓn(θ∗3)
∂σ2∂κ

∂2ℓn(θ∗3)
∂κ∂κ

∂2ℓn(θ∗3)
∂H∂κ

∂2ℓn(θ∗4)
∂σ2∂H

∂2ℓn(θ∗4)
∂κ∂H

∂2ℓn(θ∗4)
∂H∂H

−


∂2ℓn(θ)
∂σ2∂σ2

∂2ℓn(θ)
∂σ2∂κ

∂2ℓn(θ)
∂σ2∂H

∂2ℓn(θ)
∂σ2∂κ

∂2ℓn(θ)
∂κ∂κ

∂2ℓn(θ)
∂H∂κ

∂2ℓn(θ)
∂σ2∂H

∂2ℓn(θ)
∂κ∂H

∂2ℓn(θ)
∂H∂H




=
1

n

(
∂2ℓn (β

∗
i )

∂ · ∂·
− ∂2ℓn (β)

∂ · ∂·
+

∂2Gn (β
∗
i )

∂ · ∂·
− ∂2Gn (β)

∂ · ∂·

)
3×3

=
1

n

(
∂2ℓn (β

∗
i )

∂ · ∂·
− ∂2ℓn (β)

∂ · ∂·

)
3×3

+
1

n

(
∂2Gn (β

∗
i )

∂ · ∂·
− ∂2Gn (β)

∂ · ∂·

)
3×3

. (8.39)

Using Lemma 2.7 in Cohen et al. (2013) and the mean value theorem, it is can be

easily proved that

sup
1

n

∥∥∥∥(∂2ℓn (β
∗
i )

∂ · ∂·
− ∂2ℓn (β)

∂ · ∂·

)
3×3

∥∥∥∥ p→ 0 as n → ∞, (8.40)

where the sup is sought over the set of β∗
i satisfying√

n (σ2∗ − σ2)2 + n (κ∗ − κ)2 + n (H∗ −H)2 ≤ c . (8.41)

Hence, in the following, we only need to prove that every element in n−1

(
∂2Gn(β∗

i )
∂·∂· − ∂2Gn(β)

∂·∂·

)
3×3

converges to zero in probability as n → ∞, which in turn leads to

sup
1

n

∥∥∥∥(∂2Gn (β
∗
i )

∂ · ∂·
− ∂2Gn (β)

∂ · ∂·

)
3×3

∥∥∥∥ p→ 0 . (8.42)

Next, we just present the proof of n−1

(
∂2Gn(β∗

3)
∂κ∂κ − ∂2Gn(β)

∂κ∂κ

)
p→ 0 in details. The

other elements going to zero can be proved in a similar way and hence omitted due to

the space limit.

Note that

∂2Gn (β)

∂κ∂κ
= − 1

2σ2

[
2 (µ− µ∗

i )1
⊤∂2Σ−1

∂κ∂κ
X̃+ (µ− µ∗

i )
2 1⊤

∂2Σ−1

∂κ∂κ
1⊤
]

(8.43)

where
∂2Σ−1

∂κ∂κ
= 2Σ−1∂Σ

∂κ
Σ−1∂Σ

∂κ
Σ−1 − Σ−1 ∂2Σ

∂κ∂κ
Σ−1 .

From Lemma 5.4 (d) in Dahlhaus (1989), it has

1⊤Σ−1 ∂2Σ

∂κ∂κ
Σ−11 ≤ K · n2−2H+δ ,
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1⊤Σ−1∂Σ

∂κ
Σ−1∂Σ

∂κ
Σ−11 ≤ K · n2−2H+δ ,

and hence

1⊤
∂2Σ−1

∂κ∂κ
1 = O

(
n2−2H

)
. (8.44)

Using the condition of n1−H (µ− µ∗
i ) → 0, (8.43) and (8.44), we have

∂2Gn (β)

∂κ∂κ
= −(µ− µ∗

i )

σ2
1⊤

∂2Σ−1

∂κ∂κ
X̃+ o (1) . (8.45)

Consequently, we can write

1

n

(
∂2Gn (β

∗
3)

∂κ∂κ
− ∂2Gn (β)

∂κ∂κ

)
=
(µ− µ∗

i )

n
1⊤

[(
1

σ2

∂2Σ−1

∂κ∂κ

)
−
(

1

σ2

∂2Σ−1

∂κ∂κ

)∣∣∣∣
β=β∗

3

]
X̃+ o (1) . (8.46)

From Hölder inequality, it is easy to get

n−11⊤

[(
1

σ2

∂2Σ−1

∂κ∂κ

)
−
(

1

σ2

∂2Σ−1

∂κ∂κ

)∣∣∣∣
β=β∗

3

]
X̃

≤

√√√√n−11⊤

[(
1

σ2

∂2Σ−1

∂κ∂κ

)
−
(

1

σ2

∂2Σ−1

∂κ∂κ

)∣∣∣∣
β=β∗

3

][(
1

σ2

∂2Σ−1

∂κ∂κ

)
−
(

1

σ2

∂2Σ−1

∂κ∂κ

)∣∣∣∣
β=β∗

3

]⊤
1

×
√

n−1X̃⊤X̃
p→ 0 , (8.47)

where the last limit comes from the facts of n−1X̃⊤X̃ = Op (1) due to the ergodicity of

the fOU process, and the continuity of
(

1
2σ2

∂2Σ−1

∂κ∂κ

)∣∣∣
β=β∗

3

when β∗
3 → β, which makes

every term of the matrix
(

1
σ2

∂2Σ−1

∂κ∂κ

)
−
(

1
σ2

∂2Σ−1

∂κ∂κ

)∣∣∣
β=β∗

3

shrinks to zero as n → ∞.

Therefore, substituting (8.47) into (8.46), n → ∞, we have

1

n

(
∂2Gn (β

∗
3)

∂κ∂κ
− ∂2Gn (β)

∂κ∂κ

)
= (µ− µ∗

i ) op (1) + o (1)
p→ 0,

and finally, the part 2 of (C2) as

sup

∥∥∥∥{An (θ)}−1 [Fn (Θ)−Fn (θ)]
[
{An (θ)}−1

]⊤∥∥∥∥ p→ 0,

with the sup being sought over the set
∣∣∣{An (θ)}⊤ (θ∗i − θ)

∣∣∣ ≤ c is proved.
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Online Supplement to “Maximum Likelihood Estimation
of Fractional Ornstein-Uhlenbeck Process with Discretely
Sampled Data” by Wang, Xiao, Yu and Zhang (not for pub-
lication)

This online appendix contains some additional proof details omitted in the main paper

due to space limit, a set of Monte Carlo results, and a set of empirical results. The

Monte Carlo simulations aim to determine how a change in one parameter affects the

estimates of the other parameters in fOU. The target of the empirical results is to show

that all the empirical conclusions drawn in the main paper are qualitatively unchanged

when ln (RV ) is predicted.

A.1: Connecting Hult’s formula (2.16) with our formula (2.14)

Using two well known equalities csc(ϑ) = sec
(
π
2 − ϑ

)
and sin(ϑ) = 1/ csc(ϑ), we can

write the first term of (2.16) as

σ2Γ(2H + 1) sin(πH)
1

2κ2H
sec(

π(1− 2H)

2
) cosh(κj∆) =

σ2Γ(2H + 1)

2κ2H
cosh(κj∆) ,

which reduces to the first term of (2.14).

For the second term of (2.16), using the Legendre duplication formula, Γ(ϑ)Γ
(
ϑ+ 1

2

)
=

21−2ϑ√πΓ(2ϑ), and the Euler’s feflection formula (See Eq FI II 430 of 8.334 on page 876

from Gradshteyn and Ryzhik (2007)), Γ(1 − ϑ)Γ(ϑ) = π
sin(πϑ) , we can write the second

term of (2.16) as

σ2Γ(2H + 1) sin(πH)
(j∆)2HΓ(−H)√

π22H+1Γ(H + 1/2)
1F2

(
1;H +

1

2
, H + 1;

(κj∆)2

4

)
=
σ2Γ(2H + 1) sin(πH)√

π22H+1

(j∆)2HΓ(−H)Γ(H)

Γ(H + 1/2)Γ(H)
1F2

(
1;H +

1

2
, H + 1;

(κj∆)2

4

)
=
σ2Γ(2H + 1) sin(πH)√

π22H+1

(j∆)2HΓ(−H)Γ(H)

21−2H
√
πΓ(2H)

1F2

(
1;H +

1

2
, H + 1;

(κj∆)2

4

)
=
σ2Γ(2H + 1) sin(πH)

22π

(j∆)2HΓ(−H)Γ(H)2H

Γ(2H)2H
1F2

(
1;H +

1

2
, H + 1;

(κj∆)2

4

)
=
σ2Γ(2H + 1) sin(πH)

2π

(j∆)2HΓ(−H)Γ(H)H

Γ(2H + 1)
1F2

(
1;H +

1

2
, H + 1;

(κj∆)2

4

)
=− σ2 sin(πH)(j∆)2HΓ(1−H)Γ(H)

2π
1F2

(
1;H +

1

2
, H + 1;

(κj∆)2

4

)
=− σ2(j∆)2H

2
1F2

(
1;H +

1

2
, H + 1;

(κj∆)2

4

)
,
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which reduces to the second term of (2.14).

A.2: f∆
X (λ; β) satisfies the Assumption 2.1 of Cohen et al. (2013)

As stated in Cohen et al. (2013), the Assumption 2.1 of Cohen et al. (2013) corresponds

to Assumptions 1, 2 and 4 in Lieberman et al. (2012), except that some smoothness

property on the derivative of order three of f∆
X (λ;β) is imposed. Consequently, for the

sake of convenience, we will prove that the Assumptions 1, 2 and 4 defined in Lieberman

et al. (2012) are all satisfied for our stationary fOU process. We focus on the proof of

the case where H ∈ (1/2, 1). The same procedure can be extended straightforwardly to

the case of H ∈ (0, 1/2), which we will briefly discuss at the end of this proof, but omit

tedious details for simplicity. In the following, we repeat the Assumptions 1, 2 and 4

defined in Lieberman et al. (2012) in italics whenever necessary to make our proof easy

to read and self-contained.

Assumption 1: There exists α (β) ∈ (−∞, 1) such that f∆
X (λ;β) ∼ |λ|−α(β) gβ (λ)

as λ → 0, where gβ (λ) is a positive function that varies slowly at λ = 0. The func-

tions f∆
X (λ;β), f∆

X (λ;β)−1 and ∂f∆
X (λ;β) /∂λ are continuous at all (λ, β), λ ̸= 0.

For each δ > 0, it has f∆
X (λ;β) = O

(
|λ|−α(β)−δ

)
, f∆

X (λ;β)−1 = O
(
|λ|α(β)−δ

)
, and

∂f∆
X (λ;β) /∂λ = O

(
|λ|−α(β)−1−δ

)
.

To prove Assumption 1, we first get that when H ∈ (1/2, 1), the spectral density

function of discretely sampled fOU in (2.6) can be rewritten as

f∆
X (λ;β) = |λ|1−2H σ2

2π
C (H)∆2H

 1

(κ∆)2 + λ2
+ |λ|2H−1

∑
j ̸=0

ϕj (λ, κ,H)


= |λ|1−2H gβ (λ) ,

where gβ (λ) =
σ2

2πC (H)∆2H
{

1
(κ∆)2+λ2

+ |λ|2H−1∑
j ̸=0 ϕj (λ, κ,H)

}
.

Under the condition of H ∈ (1/2, 1), it has α (β) := 2H − 1 ∈ (0, 1), and hence,

|λ|2H−1 → 0 and

gβ (λ) →
σ2

2π
C (H)∆2H 1

(κ∆)2
as λ → 0 . (8.48)

On the one hand, we can directly obtain that ϕ0(λ,H, κ) = |λ|1−2H

(∆κ)2+|λ|2 is twice contin-

uously differentiable and positive at all (λ,H), λ ̸= 0. Moreover, a standard calculation

shows that

∂

∂λ
ϕ0(λ,H, κ) =

1− 2H

(∆κ)2 + |λ|2
|λ|−2H − 2

((∆κ)2 + |λ|2)2
|λ|2−2H ,
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∂

∂H
ϕ0(λ,H, κ) =

−2|λ|1−2H ln(|λ|)
(∆κ)2 + |λ|2

,

∂

∂κ
ϕ0(λ,H, κ) =− 2|λ|1−2H∆2κ

((∆κ)2 + |λ|2)2
,

∂2

∂H2
ϕ0(λ,H, κ) =

4|λ|1−2H ln2(|λ|)
(∆κ)2 + |λ|2

,

∂2

∂κ2
ϕ0(λ,H, κ) =

6∆4κ2 − 2∆2λ2(
(∆κ)2 + |λ|2

)3 |λ|1−2H ,

∂2

∂κ∂H
ϕ0(λ,H, κ) =

4∆2κ|λ|1−2H ln(|λ|)(
(∆κ)2 + |λ|2

)2 .

We can see that all the functions above are continuous at all (λ,H, κ), λ ̸= 0 and the

discontinuity in λ ̸= 0 is removable. Then for each δ > 0, as λ → 0, we have

ϕ0(λ,H, κ)

|λ|−(2H−1)−δ
=

|λ|δ

(∆κ)2 + |λ|2
→ 0,

ϕ−1
0 (λ,H, κ)

|λ|2H−1−δ
=|λ|δ

(
(∆κ)2 + |λ|2

)
→ 0,

∂
∂λϕ0(λ,H, κ)

|λ|−(2H−1)−δ
=

1− 2H

(∆κ)2 + |λ|2
|λ|δ − 2

((∆κ)2 + |λ|2)2
|λ|2+δ → 0.

Consequently, we have

ϕ0(λ,H, κ) =O
(
|λ|−(2H−1)−δ

)
, (8.49)

ϕ−1
0 (λ,H, κ) =O

(
|λ|2H−1−δ

)
, (8.50)

∂

∂λ
ϕ0(λ,H, κ) =O

(
|λ|−2H−δ

)
, (8.51)

and

∂

∂H
ϕ0(λ,H, κ) =O

(
|λ|−(2H−1)−δ

)
, (8.52)

∂

∂κ
ϕ0(λ,H, κ) =O

(
|λ|−(2H−1)−δ

)
, (8.53)

∂2

∂H2
ϕ0(λ,H, κ) =O

(
|λ|−(2H−1)−δ

)
, (8.54)

∂2

∂κ2
ϕ0(λ,H, κ) =O

(
|λ|−(2H−1)−δ

)
, (8.55)

∂2

∂κ∂H
ϕ0(λ,H, κ) =O

(
|λ|−(2H−1)−δ

)
. (8.56)
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On the other hand, for k ̸= 0, we can see that ϕk(λ,H, κ) is nonnegative, twice

continuously differentiable with

∂

∂λ
ϕk(λ,H, κ) =

(1− 2H)|λ+ 2kπ|−2H

(∆κ)2 + |λ+ 2kπ|2
− 2|λ+ 2kπ|2−2H

((∆κ)2 + |λ+ 2kπ|2)2
,

∂

∂H
ϕk(λ,H, κ) =

−2|λ+ 2kπ|1−2H ln(|λ+ 2kπ|)
(∆κ)2 + |λ+ 2kπ|2

,

∂

∂κ
ϕk(λ,H, κ) =− 2|λ+ 2kπ|1−2H∆2κ

((∆κ)2 + |λ+ 2kπ|2)2
,

∂2

∂H2
ϕk(λ,H, κ) =

4|λ+ 2kπ|1−2H ln2(|λ+ 2kπ|)
(∆κ)2 + |λ+ 2kπ|2

,

∂2

∂κ2
ϕk(λ,H, κ) =

6∆4κ2 − 2∆2|λ+ 2kπ|2

((∆κ)2 + |λ+ 2kπ|2)3
|λ+ 2kπ|1−2H ,

∂2

∂κ∂H
ϕk(λ,H, κ) =

4∆2κ|λ+ 2kπ|1−2H ln(|λ+ 2kπ|)
((∆κ)2 + |λ+ 2kπ|2)2

.

Using the results above and the definition of ϕk(λ,H, κ), for δ > 0 and as λ → 0, we

can see that

ϕk(λ,H, κ) =O
(
|λ|−(2H−1)−δ

)
, (8.57)

∂

∂λ
ϕk(λ,H, κ) =O

(
|λ|−2H−δ

)
, (8.58)

∂

∂H
ϕk(λ,H, κ) =O

(
|λ|−(2H−1)−δ

)
, (8.59)

∂

∂κ
ϕk(λ,H, κ) =O

(
|λ|−(2H−1)−δ

)
, (8.60)

∂2

∂H2
ϕk(λ,H, κ) =O

(
|λ|−(2H−1)−δ

)
, (8.61)

∂2

∂κ2
ϕk(λ,H, κ) =O

(
|λ|−(2H−1)−δ

)
, (8.62)

∂2

∂κ∂H
ϕk(λ,H, κ) =O

(
|λ|−(2H−1)−δ

)
. (8.63)

Notice that ∂
∂λϕk(λ,H, κ) ≤ 0 with H ∈ (12 , 1). Then, we have

ϕk(λ,H, κ) ≤ϕk(−π,H, κ)

=
|(2k − 1)π|1−2H

(∆κ)2 + |λ+ 2kπ|2

≤|(2k − 1)π|−1−2H

≤2π|k|−1−2H
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≤2π|k|−1−2Hm ,

where Hm = infβ∈ΘH > 0.

Consequently, we have
∑

k ̸=0 2π|k|−1−2Hm < ∞ and by Weierstrass’s M-test, the

series
∑

k ̸=0 ϕk(λ,H, κ) converges uniformly. As a result,
∑

k ̸=0 ϕk(λ,H, κ) is continuous,

and hence also bounded, at all (λ,H, κ). Similar arguments show that the derivatives of∑
k ̸=0 ϕk(λ,H, κ) are given as the infinite sum over k ̸= 0 of the corresponding derivatives

of the summands ϕk(λ,H, κ), and that they are also continuous and bounded at all

(λ,H, κ).

From (8.49)–(8.63), we have that
∑

k∈Z ϕk(λ,H, κ) and derivatives of
∑

k∈Z ϕk(λ,H, κ)

satisfy the following conditions∑
k∈Z

ϕk(λ,H, κ) =O
(
|λ|−(2H−1)−δ

)
, (8.64)

∑
k∈Z

∂

∂λ
ϕk(λ,H, κ) =O

(
|λ|−2H−δ

)
, (8.65)

∑
k∈Z

∂

∂H
ϕk(λ,H, κ) =O

(
|λ|−(2H−1)−δ

)
, (8.66)

∑
k∈Z

∂

∂κ
ϕk(λ,H, κ) =O

(
|λ|−(2H−1)−δ

)
, (8.67)

∑
k∈Z

∂2

∂H2
ϕk(λ,H, κ) =O

(
|λ|−(2H−1)−δ

)
, (8.68)

∑
k∈Z

∂2

∂κ2
ϕk(λ,H, κ) =O

(
|λ|−(2H−1)−δ

)
, (8.69)

∑
k∈Z

∂2

∂H∂κ
ϕk(λ,H, κ) =O

(
|λ|−(2H−1)−δ

)
. (8.70)

Now, using (8.64) and (8.65), we can see that

f∆
X (λ;β) =O

(
|λ|−(2H−1)−δ

)
, (8.71)

∂

∂λ
f∆
X (λ;β) =O

(
|λ|−2H−δ

)
. (8.72)

It is easy to check, as λ → 0,

ϕ0(λ,H, κ)

|λ|1−2H
=

1

(∆κ)2 + |λ|2
→ 1

(∆κ)2
,

ϕk(λ,H, κ)

|λ|1−2H
=

1

(∆κ)2 + |λ+ 2kπ|2
|λ|2H−1

|λ+ 2kπ|2H−1
→ 0.
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Let CH = C(H)/(2π) =
Γ(2H + 1) sin(πH)

2π
. Then, using these results above, we

have

f∆
X (λ;β)

|λ|1−2H
=

σ2CH∆2H(ϕ0(λ,H, κ) +
∑

k ̸=0 ϕk(λ,H, κ))

|λ|1−2H
→ σ2CH∆2H

(∆κ)2
< ∞.

Thus, we have
f∆
X (λ;β)−1

|λ|2H−1−δ
=

|λ|δ

f∆
X (λ;β) /|λ|1−2H

. (8.73)

Combining (8.48), (8.71)–(8.73) with the continuity of f∆
X (λ;β), we obtain that

f∆
X (λ;β) satisfies Assumption 1 of Lieberman et al. (2012).

Assumption 2: ∂f∆
X (λ;β) /∂βj and ∂2f∆

X (λ;β) /∂βj∂βk are continuous at all (λ, β),

λ ̸= 0, ∂
∂βj

f∆
X (λ;β) = O

(
|ω|−α(β)−δ

)
with 1 ≤ j ≤ p, ∂2

∂βj∂βk
f∆
X (λ;β) = O

(
|ω|−α(β)−δ

)
with 1 ≤ j, k ≤ p and ∂3

∂βj∂βk∂βl
f∆
X (λ;β) = O

(
|λ|−α(β)−δ

)
, with 1 ≤ j, k, l ≤ p.

To prove Assumption 2, by (8.66)-(8.70), we can easily deduce that

∂

∂H
f∆
X (λ;β) = σ2

[
∂(CH∆2H)

∂H

∑
k∈Z

ϕk + CH∆2H
∑
k∈Z

∂

∂H
ϕk

]
= O

(
|λ|−(2H−1)−δ

)
, (8.74)

∂

∂κ
f∆
X (λ;β) = σ2CH∆2H

∑
k∈Z

∂

∂κ
ϕk = O

(
|λ|−(2H−1)−δ

)
, (8.75)

∂2

∂H2
f∆
X (λ;β) = σ2

[
∂2(CH∆2H)

∂H2

∑
k∈Z

ϕk + 2
∂(CH∆2H)

∂H

∑
k∈Z

∂

∂H
ϕk + CH∆2H

∑
k∈Z

∂2

∂H2
ϕk

]
= O

(
|λ|−(2H−1)−δ

)
, (8.76)

∂2

∂κ2
f∆
X (λ;β) = σ2

[
∂(CH∆2H)

∂H

∑
k∈Z

ϕk + CH∆2H
∑
k∈Z

∂2

∂κ2
ϕk

]
= O

(
|λ|−(2H−1)−δ

)
, (8.77)

∂2

∂κ∂H
f∆
X (λ;β) = σ2

[
∂(CH∆2H)

∂H

∑
k∈Z

∂

∂κ
ϕk + CH∆2H

∑
k∈Z

∂2

∂H∂κ
ϕk

]
= O

(
|λ|−(2H−1)−δ

)
. (8.78)

Since f∆
X (λ;β) is linear with respect to σ2, we have

∂

∂σ2
f∆
X (λ;β) = CH∆2H

∑
k∈Z

ϕk(λ,H, κ), (8.79)
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∂2

∂σ2∂σ2
f∆
X (λ;β) = 0, (8.80)

∂2

∂σ2∂H
f∆
X (λ;β) =

∂(CH∆2H)

∂H

∑
k∈Z

ϕk(λ,H, κ) + CH∆2H
∑
k∈Z

∂

∂H
ϕk(λ,H, κ), (8.81)

∂2

∂σ2∂κ
f∆
X (λ;β) = CH∆2H

∑
k∈Z

∂

∂κ
ϕk(λ,H, κ). (8.82)

Using (8.74)-(8.82), we obtain that Assumption 2 of Lieberman et al. (2012)

follows.

Assumption 4: The function α(β) is continuous, and the constants appearing in the

O(·) above can be chosen independently of β (not of δ).

Using the result of α(β) = 2H − 1, we can easily obtain the results of Assumption

4.

Hence Assumption 1, Assumption 2 and Assumption 4 in Lieberman et al.

(2012) are fulfilled for the spectral density of fOU process, f∆
X (λ;β), for H ∈ (1/2, 1).

For H ∈ (0, 1/2), using similar arguments as the case of H ∈ (1/2, 1) with α(β) = 0, we

can also show that Assumption 1, Assumption 2 and Assumption 4 in Lieberman

et al. (2012) are fulfilled. Moreover, it is easy to obtain the smoothness property on the

derivative of three order of f∆
X (λ;β) for all H ∈ (0, 1). Consequently, Assumption 2.1

in Cohen et al. (2013) are fulfilled for all H ∈ (0, 1).

A.3: Simulations for fixed H and various values of σ, µ, and κ

In this experiment, we fix H to 0.260573 and allow the other parameters (σ, µ, and κ) to

take different values to determine how a change in one parameter affects the estimates

of the other parameters. Table 13 reports the simulation results when κ = 4.446145,

µ = −2.465673, and σ varies from 0.75 to 1.5. Table 14 reports the simulation results

when κ = 4.446145, σ = 1.172021, and µ varies from −2.5 to 0.5. Table 15 reports

the simulation results when µ = −2.465673, σ = 1.172021, and κ varies from 1 to 10.

According to Tables 13-15, ML always performs better than the other three methods in

estimating H,σ, κ in terms of the standard deviation. The alternative estimators of µ

have a similar finite-sample performance.

Forecasting results for ln(RV )

The main paper forecasts RV s for the Standard and Poor’s (S&P) 500 index ETF and the

nine industry ETFs. In this subsection, we compare the performance of the competing
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Table 13: Finite-sample properties of alternative estimation methods for (H,σ, µ, κ)
when H = 0.260573, T = 10, ∆ = 1/250 with various values of σ.

κ H µ σ :::: κ H µ σ

Method True value 4.446145 0.260573 -2.465673 0.750000 :::: 4.446145 0.260573 -2.465673 1.000000

MM
Mean 6.482180 0.280680 -2.464634 0.745912 :::: 6.533847 0.281600 -2.468015 1.000003
SD 2.346232 0.026090 0.028622 0.103559 :::: 2.202818 0.025526 0.039426 0.136363

MCL
Mean 4.736685 0.260140 -2.464634 0.660453 :::: 4.706750 0.259778 -2.468015 0.879312
SD 1.447678 0.013427 0.028622 0.045268 :::: 1.421765 0.013283 0.039426 0.061482

AWML
Mean 4.783731 0.261750 -2.464634 0.662134 :::: 4.743560 0.260423 -2.468015 0.881415
SD 1.124392 0.012255 0.028622 0.041165 :::: 1.298635 0.012456 0.039426 0.057362

ML
Mean 4.777911 0.261367 -2.464362 0.663226 :::: 4.792363 0.260869 -2.467470 0.882593
SD 0.986943 0.011514 0.027339 0.037803 :::: 1.028730 0.012159 0.038241 0.054805

Method True value 4.446145 0.260573 -2.465673 1.250000 :::: 4.446145 0.260573 -2.465673 1.500000

MM
Mean 6.348864 0.280466 -2.468772 1.242599 :::: 6.475826 0.281198 -2.470099 1.497698
SD 2.273947 0.026257 0.048727 0.176225 :::: 2.304653 0.026077 0.057656 0.209800

MCL
Mean 4.590842 0.259216 -2.468772 1.095389 :::: 4.697268 0.259947 -2.470099 1.320399
SD 1.474072 0.013528 0.048727 0.076820 :::: 1.487458 0.013205 0.057656 0.090503

AWML
Mean 4.680732 0.258145 -2.468772 1.099112 :::: 4.559140 0.260980 -2.470099 1.338108
SD 1.322748 0.013379 0.048727 0.071574 :::: 1.269776 0.011651 0.057656 0.084067

ML
Mean 4.616638 0.260284 -2.468778 1.099433 :::: 4.718207 0.261001 -2.469418 1.325072
SD 1.061964 0.012504 0.046272 0.069913 :::: 1.087483 0.011867 0.053866 0.080545

Table 14: Finite-sample properties of alternative estimation methods for (H,σ, µ, κ)
when H = 0.260573, T = 10, ∆ = 1/250 with various values of µ.

κ H µ σ :::: κ H µ σ

Method True value 4.446145 0.260573 -2.500000 1.172012 :::: 4.446145 0.260573 -1.500000 1.172012

MM
Mean 6.387549 0.280293 -2.502425 1.164356 :::: 6.557786 0.280944 -1.507268 1.168321
SD 2.128346 0.025208 0.045411 0.155490 :::: 2.346244 0.026223 0.042684 0.165097

MCL
Mean 4.633282 0.259075 -2.502425 1.027643 :::: 4.760308 0.259858 -1.507268 1.031093
SD 1.408072 0.013218 0.045411 0.070849 :::: 1.440295 0.013230 0.042684 0.070822

AWML
Mean 7.720884 0.192844 -2.502425 1.018842 :::: 4.733229 0.259874 -1.507268 1.032021
SD 1.303314 0.012313 0.045411 0.067321 :::: 1.190782 0.012424 0.042684 0.064719

ML
Mean 4.704257 0.260290 -2.502018 1.031934 :::: 4.767662 0.260916 -1.507925 1.034495
SD 1.122367 0.011553 0.042531 0.061377 :::: 1.043506 0.011693 0.040872 0.061317

Method True value 4.446145 0.260573 -0.500000 1.172012 :::: 4.446145 0.260573 0.500000 1.172012

MM
Mean 6.449656 0.281795 -0.495466 1.500560 :::: 6.380326 0.280981 0.496312 1.167651
SD 2.215225 0.025240 0.058120 0.198412 :::: 2.219293 0.025869 0.048198 0.161037

MCL
Mean 4.604618 0.259538 -0.495466 1.316249 :::: 4.599735 0.259537 0.496312 1.028776
SD 1.422735 0.012374 0.058120 0.083962 :::: 1.414295 0.013592 0.048198 0.072817

AWML
Mean 4.614885 0.260175 -0.495466 1.246918 :::: 4.628527 0.259832 0.496312 1.032918
SD 1.195485 0.011151 0.058120 0.065218 :::: 1.223542 0.011465 0.048198 0.068321

ML
Mean 4.632349 0.260666 -0.495156 1.321244 :::: 4.645695 0.261065 0.496755 1.034763
SD 1.068652 0.010982 0.056782 0.073103 :::: 1.111736 0.011760 0.046513 0.061723
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Table 15: Finite-sample properties of alternative estimation methods for (H,σ, µ, κ)
when H = 0.260573, T = 10, ∆ = 1/250 with various values of κ.

κ H µ σ :::: κ H µ σ

Method True value 1.000000 0.260573 -2.465673 1.172012 :::: 4.000000 0.260573 -2.465673 1.172012

MM
Mean 1.771108 0.275012 -2.471662 1.129448 :::: 5.655800 0.278912 -2.471042 1.154490
SD 1.049706 0.028485 0.199653 0.175615 :::: 2.265258 0.026882 0.055927 0.170342

MCL
Mean 1.241364 0.259833 -2.471662 1.027760 :::: 4.103789 0.259484 -2.471042 1.026788
SD 0.633910 0.012649 0.199653 0.066936 :::: 1.359120 0.011771 0.055927 0.065335

AWML
Mean 1.335375 0.260573 -2.471662 1.038502 :::: 4.300459 0.262798 -2.471042 1.034784
SD 1.220856 0.012757 0.199653 0.060939 :::: 1.130115 0.011541 0.055927 0.059933

ML
Mean 1.494851 0.263265 -2.469936 1.044580 :::: 4.418231 0.262342 -2.470825 1.040536
SD 0.687877 0.011052 0.183393 0.058929 :::: 1.035405 0.010274 0.055291 0.057587

Method True value 7.000000 0.260573 -2.465673 1.172012 :::: 10.000000 0.260573 -2.465673 1.172012

MM
Mean 9.432022 0.280405 -2.469224 1.161178 :::: 12.333309 0.276733 -2.467195 1.138530
SD 2.781223 0.021658 0.030181 0.144839 :::: 3.087544 0.022344 0.019818 0.149289

MCL
Mean 7.290524 0.260941 -2.469224 1.036934 :::: 10.564819 0.260861 -2.467195 1.037270
SD 1.895625 0.013418 0.030181 0.073588 :::: 2.257180 0.014246 0.019818 0.078490

AWML
Mean 6.822431 0.260994 -2.469224 1.043618 :::: 10.480387 0.273741 -2.467195 1.037254
SD 1.348381 0.010399 0.030181 0.067411 :::: 1.466019 0.011672 0.019818 0.067287

ML
Mean 7.195729 0.261431 -2.468857 1.037218 :::: 10.080197 0.259238 -2.467167 1.025906
SD 1.247612 0.010680 0.028115 0.058322 :::: 1.300650 0.011368 0.018669 0.061477

models in forecasting ln (RV ). We split the sample period into two periods. The first

period is between January 4, 2016 and December 31, 2020 and the second period is

between January 4, 2021 and December 30, 2022. Similar to the main paper, on each

day in the second period, h-day-ahead (with h = 1, 5) forecasts of daily ln(RV ) are

obtained from the following methods, namely MM with WXY, MCL with WXY, ML

with WXY, MM with optimal, MCL with optimal, and ML with optimal. The rolling

window estimation framework is also adopted. Table 16 reports the root mean squared

error (RMSE) of each candidate model for h-day-ahead-forecast of ln(RV )s with the best

result highlighted in boldface for each h. Interestingly, ML with the optimal formula

always performs the best, followed by MCL with the optimal formula. This result is

consistent with the forecasting results of RVs.

To investigate if forecasts from the ML estimate with the optimal forecasting formula

are statistically significantly more accurate than those of other estimation methods and

forecasting formulas, Table 17 reports the Diebold-Mariano (DM) statistic based on

the squared forecast errors and the p-value (in parenthesis) with the benchmark being

ML with the optimal forecast (boldface means statistically significant at the 10% level).

According DM, the forecast from the ML estimate with the optimal forecasting formula

is always statistically different from the MM estimate with WXY’s formula, the MCL

estimate with WXY’s formula of Wang et al. (2023), the ML estimate with WXY’s
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Table 16: RMSE for h-day-ahead-forecast of ln (RV ) of fOU using three different estimation

methods and two different forecasting methods.

Time series SPY XLB XLE XLF XLI XLK XLP XLU XLV XLY

Panel A: h = 1
MM+WXY 0.3072 0.2919 0.2822 0.2962 0.2783 0.2694 0.2686 0.2601 0.2610 0.2607
MCL+WXY 0.2995 0.2851 0.2601 0.2819 0.2724 0.2617 0.2544 0.2568 0.2592 0.2505
ML+WXY 0.2846 0.2768 0.2387 0.2618 0.2499 0.2439 0.2487 0.2462 0.2534 0.2410

MM+optimal 0.2937 0.2612 0.2596 0.2775 0.2654 0.2594 0.2598 0.2657 0.2641 0.2679
MCL+optimal 0.2774 0.2259 0.2296 0.2574 0.2373 0.2315 0.2298 0.2304 0.2391 0.2330
ML+optimal 0.2703 0.2240 0.2211 0.2502 0.2361 0.2303 0.2207 0.2280 0.2244 0.2272
Panel B: h = 5
MM+WXY 0.3446 0.3460 0.3347 0.3450 0.3368 0.3337 0.3289 0.3275 0.3309 0.3325
MCL+WXY 0.3390 0.3451 0.3264 0.3373 0.3280 0.3211 0.3251 0.3243 0.3284 0.3240
ML+WXY 0.3276 0.3340 0.3244 0.3350 0.3186 0.3166 0.3163 0.3107 0.3164 0.3123

MM+optimal 0.3346 0.3406 0.3258 0.3352 0.3231 0.3180 0.3229 0.3138 0.3206 0.3184
MCL+optimal 0.3163 0.3255 0.3149 0.3251 0.3076 0.3162 0.3152 0.3078 0.3082 0.3076
ML+optimal 0.3119 0.3224 0.3139 0.3197 0.3054 0.3012 0.3084 0.3005 0.3046 0.3050

formula of Wang et al. (2023), and the MM estimates with the optimal forecasting

formula regardless the forecasting horizon. It is almost always different from the MCL

estimate with the optimal forecasting formula regardless the forecasting horizon.

To determine whether the predictive model belongs to the set of “best” predictive

model or not, we employ the model confidence set (MCS). Table 18 reports the p-value

of the semi-quadratic statistic obtained from 2, 000 bootstrap iterations with a block

length of 12. Values in boldface denote that the model belongs to the confidence set of

the best models. From Table 18, we can see that the MM estimate with WXY formula,

the MCL estimate with WXY’s formula and the MM estimate with optimal forecasting

formula are always rejected regardless of the ln(RV ) series and forecasting horizon. The

ML estimate with WXY’s formula is rejected in all but four cases. The MCL estimate

with optimal forecasting formula is rejected in a few cases. Most importantly, in no case,

ML-estimated with optimal forecasting formula can be rejected. Similar conclusions can

be obtained at the 5-day horizon.

56



Table 17: DM statistic for h-day-ahead-forecast of ln (RV ) of fOU using three different estima-

tion methods and two different forecasting methods (the benchmark model is ML with optimal).

Time series SPY XLB XLE XLF XLI XLK XLP XLU XLV XLY

Panel A: h = 1

MM+WXY
-4.5116 -3.8385 -3.5269 -3.2693 -3.3666 -3.2396 -3.1542 -3.8318 -3.5463 -4.6066
(0.0000) (0.0000) (0.0002) (0.0005) (0.0003) (0.0005) (0.0008) (0.0000) (0.0002) (0.0000)

MCL+WXY
-3.0971 -3.2719 -3.1773 -2.4528 -2.8837 -2.7089 -2.2910 -2.3784 -2.3762 -1.8678
(0.0000) (0.0000) (0.0000) (0.0071) (0.0020) (0.0034) (0.0110) (0.0087) (0.0087) (0.0309)

ML+WXY
-1.5788 -1.3418 -1.5416 -1.7029 -1.8347 -1.5122 -1.4158 -1.9957 -1.9257 -1.5220
(0.0572) (0.0898) (0.0616) (0.0443) (0.0333) (0.0652) (0.0784) (0.0230) (0.0271) (0.0640)

MM+optimal
-2.6540 -2.3950 -2.7799 -2.0675 -2.0138 -1.9010 -2.9484 -3.0341 -2.5463 -2.6597
(0.0040) (0.0083) (0.0027) (0.0193) (0.0220) (0.0287) (0.0016) (0.0012) (0.0054) (0.0039)

MCL+optimal
-1.1982 -1.0351 -1.4686 -1.5823 -1.4006 -1.2531 -1.1705 -1.0721 -1.1042 -1.0678
(0.1154) (0.1503) (0.0710) (0.0568) (0.0807) (0.1051) (0.1209) (0.1418) (0.1348) (0.1428)

Panel A: h = 5

MM+WXY
-3.3756 -3.1275 -3.2530 -3.3495 -3.4455 -3.4796 -3.2736 -3.0693 -3.0746 -3.1288
(0.0004) (0.0009) (0.0006) (0.0004) (0.0003) (0.0003) (0.0005) (0.0011) (0.0011) (0.0009)

MCL+WXY
-2.8407 -2.2543 -2.8143 -2.2435 -2.9293 -2.3500 -2.1966 -2.2511 -2.6160 -2.4733
(0.0023) (0.0121) (0.0024) (0.0124) (0.0017) (0.0094) (0.0140) (0.0122) (0.0044) (0.0067)

ML+WXY
-1.3067 -1.3949 -1.2046 -1.3749 -2.0173 -2.0687 -1.2844 -1.5998 -1.4599 -1.2001
(0.0957) (0.0815) (0.1142) (0.0846) (0.0218) (0.0193) (0.0995) (0.0548) (0.0722) (0.1151)

MM+optimal
-1.5901 -2.1619 -1.3208 -1.4020 -1.2482 -2.2660 -1.6710 -1.6781 -1.4876 -1.2299
(0.0559) (0.0153) (0.0933) (0.0805) (0.1060) (0.0117) (0.0474) (0.0467) (0.0684) (0.1094)

MCL+optimal
-1.2735 -1.1482 -1.1784 -1.3128 -1.1434 -1.0918 -1.1842 -1.3945 -1.2179 -1.0406
(0.1014) (0.1255) 0.1193 (0.0946) (0.1264) (0.1375) (0.1182) (0.0816) (0.1116) (0.1490)

Table 18: p-values of MSC for h-day-ahead-forecast of ln (RV ) of fOU using three different

estimation methods and two different forecasting methods (the benchmark model is ML with

optimal).

Time series SPY XLB XLE XLF XLI XLK XLP XLU XLV XLY

Panel A: h = 1

MM+WXY 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MCL+WXY 0.0025 0.0077 0.0053 0.0296 0.0384 0.0365 0.0694 0.0631 0.0897 0.0015
ML+WXY 0.0285 0.1188 0.0933 0.0885 0.1077 0.1045 0.1349 0.1050 0.1715 0.0165

MM+optimal 0.0248 0.0339 0.0328 0.0418 0.0536 0.0611 0.0899 0.0747 0.0904 0.0035
MCL+optimal 0.3025 0.3622 0.2245 0.2545 0.3188 0.1365 0.2754 0.2241 0.2075 0.0455
ML+optimal 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Panel B: h = 5

MM+WXY 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MCL+WXY 0.0021 0.0030 0.0047 0.0023 0.0084 0.0019 0.0023 0.0017 0.0023 0.0044
ML+WXY 0.0911 0.1423 0.0930 0.0785 0.1405 0.1180 0.0939 0.0911 0.1258 0.0709
ML+WXY 0.0870 0.0537 0.0517 0.0285 0.0491 0.0599 0.0643 0.0416 0.0394 0.0690

MCL+optimal 0.2061 0.3488 0.3000 0.2960 0.1809 0.1920 0.1235 0.2719 0.2611 0.0953
ML+optimal 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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