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Abstract

This paper first derives two analytic formulae for the autocovariance of the dis-
cretely sampled fractional Ornstein-Uhlenbeck (fOU) process. Utilizing the analytic
formulae, two main applications are demonstrated: (i) investigation of the accuracy
of the likelihood approximation by the Whittle method; (ii) the optimal forecasts
with fOU based on discretely sampled data. The finite sample performance of the
Whittle method and the derived analytic formula motivate us to introduce a feasible
exact maximum likelihood (ML) method to estimate the fOU process. The long-span
asymptotic theory of the ML estimator is established, where the convergence rate is
a smooth function of the Hurst parameter (i.e., H) and the limiting distribution is
always Gaussian, facilitating statistical inference. The asymptotic theory is different
from that of some existing estimators studied in the literature, which are discontin-
uous at H = 3/4 and involve non-standard limiting distributions. The simulation
results indicate that the ML method provides more accurate parameter estimates
than all the existing methods, and the proposed optimal forecast formula offers a
more precise forecast than the existing formula. The fOU process is applied to fit
daily realized volatility (RV) and daily trading volume series. When forecasting RV,
it is found that the forecasts generated using the optimal forecast formula together
with the ML estimates outperform those generated from all possible combinations
of alternative estimation methods and alternative forecast formula.
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1 Introduction

Estimating continuous-time diffusion models driven by the standard Brownian motion
(Bm) with discretely sampled data has garnered considerable attention in the literature.
The Markov property, inherent to Bm-driven diffusions, ensures that the log-likelihood
function can be obtained as the sum of log transition probability densities. When the
transition probability density has a closed-form expression, the likelihood function can be
easily computed, enabling exact maximum likelihood (ML) estimation. If the transition
probability density is not available in closed form, Ait-Sahalia (1999, 2002) provides a
highly accurate method to approximate the transition probability density, facilitating
the ML estimation. See, for example, Phillips and Yu (2009) for a literature review.

In the case where the drift function is affine and the diffusion function is constant,
the diffusion model becomes the classical Ornstein-Uhlenbeck (OU) process. In this
case, both the transition probability density and the ML estimator have closed-form
expressions. The fractional OU (fOU) process studied in this paper is an extension of
the OU process by replacing the standard Bm with a fractional Brownian motion (fBm).
The standard Bm has independent increments. On the other hand, the increments of fBm
can have a vibrant correlation structure. The fOU process has found wide applications
in practice, including modeling and forecasting volatility and trading volume of financial
assets (Gatheral et al., 2018; Fukasawa et al., 2022; Wang et al., 2023; Bolko et al.,
2023; Bennedsen et al., 2024; Shi et al., 2024; Chong and Todorov, 2024), options pricing
(Livieri et al., 2018; Bayer et al., 2016; Garnier and Sglna, 2018), variance swaps (Bayer
et al., 2016), portfolio choice (Fouque and Hu, 2019), trading strategies (Glasserman
and He, 2020), and hedging (Euch and Rosenbaum, 2018).

Due to the complex dependence structure of the increments of fBm (known as the
fractional Gaussian noise or fGn), the fOU process, sampled at discrete points in time, is
not Markovian. This non-Markovian property poses challenges in constructing ML esti-
mation from discretely-sampled data. Recently, several alternative estimation methods
have been proposed to estimate parameters in the fOU process based on discrete samples,
including the method-of-moments (MM) method by Wang et al. (2023, WXY hereafter),
the maximum composite likelihood (MCL) method by Bennedsen et al. (2023, 2024),
and the approximate Whittle ML (AWML) method proposed by Shi et al. (2024). The
MM and MCL methods are expected to be inefficient, as they only utilize limited infor-
mation. The AWML method can yield asymptotic efficient estimators for the parameters

in fOU, except the location parameter p, which is usually estimated separately by the



sample mean or another consistent estimator a priori. However, the AWML estimators
may not perform well in finite samples when the Whittle method approximates the exact
likelihood function poorly. The concerns above motivates this paper to construct feasible
exact ML estimation.

In this paper, we first provide two analytic formulae for the autocovariance function
of the fOU process, which facilitate (i) exact ML estimation, (ii) checking the accuracy
of an approximate likelihood method of Shi et al. (2024), and (iii) obtaining the optimal
forecasts with fOU based on discretely sampled data. We show that the approximate
likelihood method may give a poor finite-sample approximation, especially when the
sample size is small and H is large. Regarding out-of-sample forecasting, the common
practice in the literature is using the Euler scheme to discretize the continuous-record-
based forecasting formula given by Fink et al. (2013) and then generating forecasts.
This method is not optimal when only a discrete sample is available. Hence, the opti-
mal forecasting formula for discrete samples proposed in this paper is fundamental for
empirical studies related to forecasting.

The paper then develops a large-sample theory for the ML estimators of all the
parameters in fOU under the long-span asymptotic scheme, where the sample size goes
to infinity with a fixed sampling interval. Consistency and asymptotic normality are
established. Compared to the asymptotic theory of the MCL estimators developed by
Bennedsen et al. (2024) and that of the MM estimator studied by Wang et al. (2023),
which is discontinuous at H = 3/4 for both the convergence rate and the asymptotic
distribution, our asymptotic theory for the exact ML estimators uniformly applies to
all the values of H € (0, 1), with the asymptotic covariance matrix being a continuous
function of H. This feature greatly facilitates statistical inference, especially when the
confidence interval of H includes 3/4.

In addition, the newly developed large sample theory for the location parameter p
shows that the exact ML estimator is more efficient than the sample mean, especially
when H > 1/2. The asymptotic theory for ML estimators of the long memory stationary
process has been well studied in the literature, including the seminal works of Fox and
Taqqu (1986), Dahlhaus (1989), and Lieberman (2012). However, these works either
assume the location parameter of the process is known or is estimated prior by the sample
mean or other consistent estimators with a specific convergence rate. Our asymptotic
theory extends results in the literature when all parameters are estimated simultaneously
by the ML approach.

With realistic parameter settings relevant to financial markets, we have conducted



comprehensive simulation studies to compare the finite sample performance of the ML
estimation method with that of the existing estimation methods. The simulation results
demonstrate improved forecasting accuracy using the ML estimators and the proposed
optimal forecasting formula for discrete samples.

For empirical applications, we fit the fOU process to daily realized volatility (RV)
and daily trading volume for ten exchange traded funds. Strong evidence of roughness
for the logarithmic RV and trading volume series is found. Moreover, we compare the
out-of-sample forecasting performance of RV using the fOU process with three different
estimation methods (i.e., ML, MCL, and MM) and two different forecasting methods. It
has been found that the forecasts generated by using the ML estimation method together
with the proposed optimal forecast formula for discrete observations have the most minor
mean squared error for all assets considered. The Diebold-Mariano test shows that the
improvement relative to the forecasts from other combinations of estimation approach
and forecasting formula are statistically significant. In addition, the results of the model
confidence set test proposed by Hansen et al. (2011) suggest that the ML method
together with the optimal forecast formula is always in the set of best predictive methods
for all the assets.

The rest of the paper is structured as follows. In Section 2, we first introduce the fOU
process and present two analytic formulae for the autocovariance of the fOU process.
We then check the performance of the expressions against numerical methods, taking
account of both accuracy and computational cost. Section 3 considers two applications
of the analytic formulae for the autocovariance of fOU: investigating the distance of the
Whittle approximation from the exact likelihood function and constructing the optimal
forecasting formula with discrete samples, respectively. Section 4 studies the feasible
exact ML estimation and develops the long-span asymptotic theory of the ML estima-
tor. In Section 5, the finite sample performance of the ML method is compared with
that of existing methods using simulated data. Moreover, the finite sample accuracy
of the forecasts generated using the ML method and the proposed optimal forecasting
formula is compared with that generated from combinations of alternative estimation
approaches and forecasting formulae. Section 6 presents some empirical applications of
the fOU process. Section 7 concludes. The proofs are given in the Appendix. The online
supplement contains additional proof details, simulations, and empirical results.

Throughout the paper, we use 2 i), 2 to denote convergence in probability, con-
vergence distribution, and distributional equivalence, respectively. For a matrix A, |A|

represents its determinant, and || A|| = (tr (AT A)) /2 denotes the Euclidean norm, where



the upper index ' denotes vector/matrix transpose. For a matrix series {A;}, when

|A; — Al — 0, it is claimed that A; converges to A.

2 fOU Process

2.1 Some preliminaries of fOU

The standard OU process is driven by the standard Bm (W;), defined by
dZt = KJ(,U, - Zt)dt + O'th, ZO == Op(].), (21)

which has a unique path-wise solution given by

t
Zy=e "7, + (1 — e*”t) w+ 0/ e =s) gy,
0

Under the conditions of k > 0 and Zy ~ N (u, o2/ (25)), Zy is stationary and ergodic.
The fOU process is an extension of the standard OU process above by replacing W,
in (2.1) with an fBm, Bf for H € (0,1). An fBm is a zero mean Gaussian process with

the autocovariance function of
1
Cov (B!, B) = 2 <\t\2H +|s2H - s|2H) , Vi se0,00) (2.2)

where H € (0,1) is called the Hurst parameter. When H = 0.5, B} becomes a standard
Bm, that is, BY° 4 Wi, which has independent increments. In contrast, whenever
H # 0.5, B has stationary increments with a rich serial dependence structure. The
increment sequence has long memory property (i.e., the summation of autocovariances
diverges to infinity) when H € (0.5,1), whereas it becomes antipersistent (i.e., the
summation of autocovariances equals zero) when H € (0,0.5). In addition, B} is self-
similar in the sense that VYa € R, B 4 la|" BH.

Strictly speaking, the fOU process is defined by the following differential equation:
dX; = w(p— Xp)dt + odBl, Xo=0,(1), (2.3)
which has a unique path-wise solution as
t
Xe=e"Xo+(1-e™)p+o / e r =) gBH, (2.4)
0

Let I'(o) = [;°y* ‘e ¥dy denote the Gamma function. When x > 0 and X ~
N (p,0?T(2H +1)/ (262H)), X, is stationary and ergodic. Moreover, X; is (locally)



Hoélder continuous of order H — € for any € > 0. Hence, the fOU process with H < 0.5
has sample paths rougher than those of the standard OU process with H = 0.5. As a
result, the fOU process with H < 0.5 is referred to as a rough fOU process; see Gatheral
et al. (2018).

Define C' (H) :=T'(2H + 1) sin (7 H). Hult (2003) obtains the spectral density of the

continuous-time fOU process as
2
Fx (A B) = ;’70 (H) A2 (52 + A2) 7! for A € (—o00, 00). (2.5)

with 8 = (0%, k, H) . In the literature, various methods have been proposed to estimate
parameters of the f{OU process based on a continuous record. A partial list of important
contributions include Kleptsyna et al. (2000), Kleptsyna and Le Breton (2002), Hu and
Nualart (2010), Hu et al. (2019), Xiao and Yu (2019a, b), Lohvinenko and Ralchenko
(2017, 2019), Tanaka et al. (2020), Tanaka (2013). However, although fOU is specified
in continuous time, in practice, observations are almost always available in a discrete
sample. As a result, the above-mentioned estimation methods have been rarely used in
practice.

In the present paper, we assume s > 0 and study the ML estimation approach and the
optimal forecast of fOU based on discrete-time observations, say X = (Xo, XA, -+, Xna) ',
where n + 1 is the sample size and A is the sampling interval. The discrete time se-
ries {X;a} j=01,2,.;n 152 Gaussian stationary process with the following spectral density
(Hult, 2003)

Ao O — X+ 2mk|'2H
IROB) = CUNN S s s 2]

for A € [—m, 7). (2.6)

k=—o00

When 0.5 < H < 1, it can be shown that
FEB) =N L, (0) 500 asA—0

where L, (\) is a slowly varying function as A — 0 with the following expression and

limit
2 1 ~ A+ 2mk|t2H
Le(\) = —C(H) AP { — 4 |\2H D | j mH] . (2.7)
27 (KA)" 4+ N2 20 (KA)” + (N + 27k)
2
S Zomat L
2 (/{ )



Hence, {X;a} is a long-memory process. Whereas, in the case of 0 < H < 0.5, it has

fim 18 8) = 2 09) = Comar S T g
P XA 2w (kA)? + (27k)? Y

k=—o0

which means {X;a} becomes a short-memory weakly stationary process.
From the Gaussianity of fOU, the likelihood function is

Ly (0) = (2m) "D/ 02572 exp (—}, (X —p1)" 27 (X - m)) . (28)

where § = (u,02,x, H) contains all unknown parameters in fOU, 1 = (1,1, ..., 1)T, b))

is the covariance matrix of 02X, which is a symmetric Toeplitz matrix and defined by

70 A <o A
Y= 0-72 [COV(XiA7 XSA)]Z',S:O,LW n= 0-72 ’ (29)

A Vn—1A -+ Y0
where ;A denotes the jth autocovariance of discretely sampled fOU.
Choosing 6 to maximize In L,, (0) yields the ML estimate. Garnier and Sglna (2018)

(Eq. (6)) provide an expression of the autocovariance:

g

2 1 (o)
%ia = 557 <2/ e WkjA + y[*Hdy - mjA!fo) for j=0,1,...,n. (2.10)
R —OoQ

When j = 0, ;A becomes the variance of X;A and can be written as

o? < o’T(2H + 1
Var(Xt) = 21%211‘[/0 € nyde = (21%21.{) (211)

2.2 Two analytic formulae for the autocovariance

Although Equation (2.10) gives an expression for each element in the covariance matrix
Y, it involves an integral over the interval of (—oo, +00). Generally this integral must be
evaluated numerically. Numerical integrations for all potential parameter values make
the ML estimation extremely time-consuming, especially when n is large. Moreover, nu-
merical integrations potentially lead to large approximation errors, making the resulting
MLE distant from the actual parameter values. This subsection provides two alternative

analytic formulae for ;A to facilitate the calculation of the likelihood function.

Lemma 2.1 Consider fOU defined in (2.3) with k > 0 and the stationary initial condi-
tion of Xo ~ N (p, 0?T'(2H + 1)/ (26*7)). Let {Xo, XA, , Xna} be a discrete sample.
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For any j > 0, it has
(a):

2 —KjA .
Yia = 46 o {TQH +1) — (i A Fi(2H; 1+ 2H; 1jA) + 2He* AT (2H, kjA) }

(2.12)
where 1F1(+;+;+) and T'(+,-) are, respectively, the confluent hypergeometric function of the

first kind and the upper incomplete Gamma function defined by

: X 2H  (kjA)"
1FLRH L+ 283 154) nz:;)?H—&-n n! (2.13)
and -
o KJA
I‘(2H7 K]]A) — / SQH—le—SdS :F(2H> _/ 32H_1€_8d8;
KJA 0
(b):
o - AN2H 1 (kjA)?
ViA = 5,20 cosh(kjA)'(2H + 1) — (kjA)* 1 Fy | 1; H + 57H + 1 1
(2.14)

where cosh(z) = [exp(x) + exp(—x)] /2 is the hyperbolic cosine function and 1 Fy denotes

the gemeralized hypergeometric function as

_ 1 (KjA) (H+1/2)0(H +1) kAN
1F2<1’H+2’H+1 ) ZFH+1/2+n)I‘(H+1+n) 2 (2.15)

Remark 2.1 As simulation results provided later suggest, the two analytic formulae
have the same accuracy in computing v;a and yield more accurate results than well-
known numerical integration methods. Note that ;A is a typical element in X, whose
determinant and inverse must be calculated to evaluate the log-likelihood function in
(2.8). Errors in approximating vja by numerical integration methods may translate to
the determinant and the inverse of . As a result, they may potentially distort the ML

estimate.

Remark 2.2 Between the two analytic formulae, (2.14) is faster to compute than (2.12)

for two reasons. First, 1Fy is faster to compute than 1Fy. That is because the term

T'(H +1/2)['(H +1) _O< 1 )

I(H+1/2+n)l(H+1+n)  \nh!
converges faster than 2?}_{_71% Second, the formulae in (2.12) needs to calculate an extra

term, T'(2H, kjA).



Remark 2.3 Hult (2003) gives an alternative formula of the autocovariance yja as
1
vja =0T (2H + 1) sin(r H) {2/1_2H sec(m(1 — 2H)/2) cosh(kjA)

AVHT(—H 1 KjA)?
+\/%(2]2H11F(I({+ i/2)1F2 <1;H+ i1 >} (210

In the Online Supplement, we show how this formula is related to (2.14).

Remark 2.4 Unlike the expression given in (2.10) where each element in ¥ must be
obtained by numerical integrations, the expressions given in (2.12), (2.14) and (2.16)
suggest that we can calculate all the elements in X without relying on any numerical
integration methods. All the special functions involved in the formulae presented in
Lemma 2.1 and (2.16) have been well studied in the mathematics literature and can be
accurately calculated by using built-in functions in standard softwares, such as MATLAB
and R.

2.3 Performance of alternative expressions

We now evaluate the accuracy and the computational cost of evaluating (2.10) numer-
ically and calculating (2.12), (2.14) and (2.16). To do so, we set ¢ = 1, H = 0.2, A =
1/252 and k = 1 but allow j to vary from 0 to 2500. When evaluating (2.10) numeri-
cally, we use MATLAB commands quadgk and integral. The MATLAB command quadgk
evaluates the integral numerically based on high-order global adaptive quadrature and
default error tolerances. The MATLAB command integral evaluates the integral numer-
ically based on global adaptive quadrature and default error tolerances. Moreover, we
calculate the expressions given in (2.12), (2.14) and in (2.16) by using the MATLAB
commands to evaluate 1 F; and 1 F5, and the MATLAB commands gamma, igamma to
evaluate I'(-) and T'(+, ).

Table 1 reports autocovariances of fOU using different methods when j=0, 1, 100,
200, 300, 400, 500, 1000, 1500, 2000, 2500 while Table 2 reports the CPU time (in
seconds) in calculating the autocovariance values for j = 0,1,...,2500 when running
MATLAB2021b in a 2.8 GHz Intel Core i7-10710U CPU with 16 GB of RAM and Win-
dows 10. According to Table 1, the three analytic formulae given in (2.12), (2.14) and
(2.16) always yield the identical values. However, both quadgk and integral give differ-
ent values from those calculated from the analytic formulae, suggesting that numerical
integrations lead to approximation errors. Between the two numerical methods, integral

has smaller approximation errors than quadgk. However, according to Table 2, integral



is computationally more costly than quadgk. Among the three analytic formulae, (2.14)
is the fastest to compute and (2.12) is the slowest, as expected. Computing (2.10) by
quadgk is faster than by using the three analytical expressions. However, as shown in

Table 1, quadgk leads to much larger approximation errors.

Table 1: The values of the autocovariances using different formulae when o = 1, H = 0.2, A =
1/252, k =1, and j = 0, 1,100, 200, 300, 400, 500, 1000, 1500, 2000, 2500. The boldface shows the

difference.

J (2.10) by quadgk (2.10) by integral |(2.12), (2.14), (2.16)

0 443631908751538 | .443631908751538 | .443631908751538

1 | .388882037284944 | .388881922491498 | .388881909561334

100 | .117190968855458 | .117190530899574 | .117190522788601

200 | .045869415544228 | .045869299134194 | .045869320276164

300 | .012355758479432 | .012355472615600 | .012355439277410

400 |-.004112113948332 |-.004112210815218 | -.004112011199993
500 |-.011890279222754 | -.011890441908578 | -.011890470208617
1000|-.013084013072070|-.013091808741521 | -.013091823515404
15001-.007620166025256 |-.007620537228084 | -.007620528689543
2000|-.004703526957885 | -.004705950339660 | -.004705938475695
25001 -.003208318355352 | -.003208393056313 | -.003208393362911

Table 2: CPU time (in seconds) of computing the autocovariances using different formulae when
c=1,H=02,A=1/252, k=1, and j =0, ..., 2500.

J (2.10) by quadgk
from 0 to 2500 3.437500

(2.10) by integral
41.250000

(2.12)
6.637500

(2.14)
4.218750

(2.16)
4578125

To further understand the implications of the approximation errors, we apply quadgk,
integral and (2.14) to calculate In |¥| and In L,,(0) when n = 2500 and H = 0.2,0.4, 0.6, 0.8.
Table 3 reports the values of In |¥| and In L, () when 0 = 1,A = 1/252, k = 1, calcu-
lated by applying three alternative methods: (2.10) by quadgk, (2.10) by integral, and
(2.14). Tt is clear that the errors incurred by quadgk and integral in approximating the
autocovariances lead to substantial errors in approximating In |¥| and In L,,(6), espe-
cially for quadgk and when H is large. To strike the balance between the computational
speed and numerical precision, in the rest of the paper, we will apply the analytical

expression (2.14) to calculate autocovariance.
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Table 3: Values of In|X| and InL,(f#) when ¢ = 1,A = 1/252, x = 1, H =
0.2,0.4,0.6,0.8, and n = 2500 obtained by alternative methods of computing the au-
tocovariances. The boldface shows the difference.

H Expression (2.10) by quadgk (2.10) by integral (2.14)

0.2 In |3 -8507.250816421579657 -8507.052292128733825 -8507.053629693704352

InL,(0) -5563.078623025841807 -5563.643675034223634 -5563.647212954847419

In |X| -11833.823834806182276 -11832.647803225803727 -11832.642928066117747

0-4 InL,(0) -3510.705013957488518 -3510.058645632319531 -3510.005125368167683
06 In |X| -15998.984553859338121 -15985.467690883881005 -15985.430818915077907
" InL,(f#) -2869.805004141110658 -2862.548594308252177 -2862.475203322524976
08 In|¥| -21381.235952217579324 -20788.155230374970415 -20788.131369394981448

InL,(0) -2484.097131805580375 -2565.166811946502094 -2565.154210472930117

3 Applications to Likelihood Approximation and Optimal
Forecast

We consider two applications of the analytic formulae: (i) evaluating the accuracy of
the approximate Whittle likelihood proposed by Shi et al. (2024), which motivates the
use of exact ML estimation, and (ii) deriving the optimal forecast based on a discrete

sample.

3.1 Likelihood approximation by Approximate Whittle Likelihood

Whittle (1951, 1954) proposed a way to approximate the log-likelihood function of a
stationary model based on the spectral density. The log Whittle likelihood function

takes the form of

()=~ [ (wrR0us)+ s (31)

where 3 = (02, k, H) T, f2 (\; B) is the spectral density given in (2.6), and P, ()\) is the
periodogram. When the location parameter p is known and assumed to be zero, let
i:=+/—1 and then P, (\) is

2

! DIEACHCI (3.2)
=0

PN =—7F——
) 2r(n+1 p

11



When g is unknown that is often the case in practice, Shi et al. (2024) proposed to
obtain the periodogram P, (\) by using the sample mean X as'

n

> (Xja — X)exp (—ijA)] - (3.3)
j=0

1

Fn(A) = 2r(n+1)

The log Whittle likelihood function is derived from the following two well-known ap-
proximations:
Y7 x fagt ! and In|¥| = (n+1) (277)1/ In f2 (\; B) dX,

jk=1

—Tr

where a;, = (2m) 2 7O B) "t elli=RAg\,

However, the spectral density of the fOU process f)%()\; B) given in (2.6) is not avail-
able in closed form in the sense that it involves an infinite summation, which converges
at a slow rate when H is close to zero. Shi et al. (2024) proposed the modified Paxson
approximation to calculate f)%()\; B) and showed that it yields very small approximation
errors.

The AWML estimate of 3 can be obtained by minimizing lyy () with respect to 3,
under the constraints of 02 > 0,k > 0, H € (0,1), which is denoted by BAWML- The

asymptotic theory for B AWML 1S

ﬁ(BAWML —B) 4 N (07 (417T /: {mnfé%ﬁ()\;ﬁ)} {mn%%ﬂ(//\;g)}d)\)—l) |
(3.4)

For the weakly stationary first-order autoregressive model, Rao and Yang (2021)

derive an analytic expression for the difference between the log likelihood function and
the log Whittle likelihood function. Unfortunately, to the best of our knowledge, no
analytic expression is available for the fOU model. However, the derived analytic ex-
pressions for covariances facilitate the calculation of the exact log likelihood, and hence,
checking the accuracy of the approximate Whittle likelihood proposed by Shi et al.
(2024) numerically. To investigate the difference between In L,, (0, 5) and Iy (), Table
4 reports In L, (0,8)/(n+ 1), lw(8)/(n + 1), and (In L,(0,8) — lw(B))/Ln(0, 8) when
w=0,k=10=1 A =1/252, n = 504,2520, H = 0.1,0.3,0.5,0.7, with the data
{X;a} simulated from fOU. It clearly shows that ly (/) provides worse approximations

'While Shi et al. (2024) did not claim to use X to estimate u nor develop the asymptotic theory
for X, since I, (\) is calculated from X, we will use it to estimate p for AWML in our simulation and
empirical studies.
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to In L, (0, 8) when H is large or when n is small. These differences are expected to
have implications for the finite sample performance of the AWML method relative to

the exact ML method, which will be carefully investigated in Section 5.

Table 4: The difference between In L, (0, 8)/(n+1) and lyw (8)/(n+1) when k = 1,0 =1,
A = 1/252, n = 2520,504, H = 0.1,0.3,0.5,0.7 and with data {X;a} simulated from
fOU.

n+1 n+1 In L, (0,5)
0.1 -0.485656 -0.484626 .0212
9520 0.3 -2.608224 -2.60467 .0136
0.5 -4.873668 -4.83139 .0867
0.7 -7.327926 -6.983444 4.701
0.1 -0.465799 -0.461355 .0954
504 0.3 -2.410964 -2.333839 3.199
0.5 -4.524476 -3.871145 14.44
0.7 -6.851600 0.760280 111.10

3.2 Optimal forecast

When a continuous-time record of X; over the period of (0,7] is available, Fink et al.
(2013) develop the formula of the conditional expectation and conditional variance of
X7y with h > 0 to generate the optimal forecast.

When a discrete sample is available, WXY apply the Euler scheme to the formulae
derived in Fink et al. (2013) to generate forecast.? With discrete-time observations,
however, the formula of conditional mean derived by Fink et al. (2013) is not optimal
for forecasting purposes anymore, for it does not minimize the root mean squared error

(RMSE).
Let '7}(1(2RA) = (Cov (X(n—l-h)A) Xo) sy Cov (X(n+h)A, XnA))T be the vector of covari-
ances between X, ;A and X. The expectation of X(,,;5)a conditional on the historical

discrete-time observations X is

n T _
E(X(nimalX) =i+ (3iaY) 571X - 1), (3.5)

which gives the optimal forecast of X(,;,)a when X is available because it minimizes

2Recently, Gao et al. (2023) propose an alternative numerical method to approximate the conditional
variance formula of Fink et al. (2013) (see Algorithm 1 in Gao et al. (2023)), which will be used in
the rest of the paper.
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the mean squared error (MSE) of the forecast errors, which is given by

E [{E(X(n+h)A\X) - X(n+h)A}2} = oA — (’y;(ZOA:nA))T ! (’Y;(ZOA:”A)> : (3.6)

Since elements in X and 'y}(LOAmA) are readily obtained from (2.14), our analytic formula

facilitate the calculation of the optimal forecast when a discrete sample is available.
When the quantity of interest is exp (X (n+h) A) instead of X(,1p)A (i.e., RV instead
of log RV), as shown in WXY, one must also compute the conditional variance based on
a discrete sample, which takes the same form as the MSE above, for X(,,;4)a and X are
jointly normally distributed. Again, our analytic formula given in (2.14) facilitates the

forecasting procedure for exp (X (n+h) A)-

4 Exact ML Estimation and Asymptotic Theory

In Section 3 we have shown that the approximate Whittle method may provide poor
approximations to the true log likelihood when H is large and n is small. This obser-
vation suggests that it is important to calculate the exact likelihood function and then
to produce the exact ML estimate. The derived analytic formula of the autocovariance
function ;A given in Lemma 2.1 significantly facilitates the construction of the exact
ML estimator based on a discrete sample. This section, therefore, constructs the ML
estimator in details and develops its long-span asymptotic theory. The long-span asymp-
totic scheme assumes n — oo with a fixed A, which is the same scheme adopted in Shi
et al. (2024) and Bennedsen et al. (2024), but different from the double asymptotic
scheme considered in WXY that requires A — 0 simultaneously.

Consider the case where the location parameter p is unknown. From (2.8), the
log-likelihood function of the fOU process takes the form of

n+1 1 1 _
n(0) = ——5— In(27) — 5111\022\ — 53 (X - p) T ST (X = ). (4.1)

Note that the elements in ¥ depend on « and H only. Hence, we can profile the log-
likelihood by

17y1X
ple, H) = -7 (4.2)
Ty Ty (TE71X)°
o2 1) = X pl5 1) X —p(s, H)L) X R X ey (4.3)
’ n+1 n+1 '

Substituting (4.2) and (4.3) into (4.1) yields the following profile log-likelihood function

n+1
2

1 1
nt In(27) — nt

1
ln(k,H) = — 1HUQ(IQ,H)—§IH|E|—
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n+1

1
Ino?(r, H) — §ln|2] (4.4)

Maximizing the profile log-likelihood function above yields the ML estimators of x and

H . which can be identically written as

(EML, ﬁML> = argmin [(n + 1) In 0% (k,H) +1n =] . (4.5)

k,H

Consequently, injecting (EML,ﬁ ML) into formulae (4.2) and (4.3) gives the ML esti-

mators of p and o2, respectively:

v = p(Rarn, Har) and o2y = o2 (Rarr, Harr).- (4.6)

~ — ~ T T
In the rest of the paper, we use 0y, = (;’IML,UQML,T%ML,HML) = (ﬁML,E\rJL> to

~ — ~ T
denote the MLE of 6 with By, = <0'2ML;7<'3\ML7HML> .

The long-span asymptotic properties of (Z)\ML are provided in Theorem 4.1.

Theorem 4.1 For H € (0,1), let f{ (\;8) denote the spectral density given in (2.6),

gn(H) = { 7;211_/;{ ZZJ;I;;; 11//227 and A, (0) = diag(g,(H), /n,/n,/n). When n — oo
with a fixed A, it has
An(6) (§ML . e) 4 N (0,771 (9)), (4.7)
where
. Avar,, 0
L= ( 0 [L[7, (Vs e (st s @ > ’
with

Avar 2fQ () i H<1/2,
= r(2—2H o2C(H)A2H— . ,
g B(3/2(—H,3/%—H) ( ,32 if H>1/2

B(a,b) =T (a)T (b) /T (a + b) being a Beta function.

Remark 4.1 Theorem 4.1 shows that a unified asymptotic theory ofBML = (ﬁML’ KML, ﬁML>T
applies to all values of H € (0,1). The asymptotic covariance continuously changes in

H. This feature facilitates statistical inference. In sharp contrast, for the long-span
asymptotic theory of the MCL estimator in Bennedsen et al. (2024) and the double
asymptotic theory of the MM estimator in Wang et al. (2023), both the convergence rate

and the asymptotic distribution are discontinuous at H = 3/4. Moreover, the asymptotic
Rosenblatt distribution has to be applied for the MCL estimator and the MM estimator

when H > 3/4, making statistical inference difficult.
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Remark 4.2 Also shown by Theorem 4.1 is that the exact ML estimator B\ML has the
same asymptotic theory as the AWML estimator BAWML in Shi et al. (2024). However,
since AWML is based on the approzimate likelihood function, which can be far away from
the exact likelihood function, especially when H is large and n is small, as shown by the
stmulation results reported in Table 4. We expect B\ML is more efficient than AWML
of Shi et al. (2024) in finite sample, especially when H > 0.5. Moreover, the AWML

method does not estimate (.

Remark 4.3 Theorem 4.1 shows that, when H < 0.5, the convergence rate of L
is \/n, which does not depend on H. In contrast, the asymptotic theory developed in
Adenstedt (1974) suggests that the convergence rate of the ML estimator of the location
parameter is n*~H for fGn with H € (0,0.5) and for the ARFIMA (p,d,q) model with
the memory parameter d = H — 0.5 € (—0.5,0). While this difference appears to be
surprising, it is caused by the fact that the fGn and the ARFIMA (p,d,q) process are
antipersistent with a zero long-run variance when H € (0,0.5). Whereas, when H < 0.5,
the fOU process is a short memory stationary process with a well-defined strictly positive
long-run variance as

. 2 & 2k |12
0<2nfx (0;8) =0°C(H)A Z (kA)2 + (27k)2

k=—oc0

< Q.

5 Monte Carlo Studies

This section is devoted to evaluating the finite-sample performance of the ML estimators
when a discrete sample is simulated from Model (2.3). The simulation procedures for
the fOU process are the same as in WXY. To examine the relative performance of the
ML method, we apply three existing estimation methods to the simulated data: the
MM method of WXY, the MCL method of Bennedsen et al. (2024), and the AWML
method of Shi et al. (2024). The AWML method has been introduced in Section 3. We
now briefly review the MM and MCL methods to improve the readability of comparison

results presented below.
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5.1 Alternative estimators

WXY use four moment conditions to construct the MM estimators for parameters in
fOU, that is,

n—4
2
- . s (Xiraa = 2X(ro)a + Xia)
Hyy =5 log, — o
(X204 — 2X (1118 + Xia)
=0
n—2 9
> (Xr2a = 2Xa4a + Xia)
Gum =, | =

(’/L + 1) (4 — 221{\[]\/11\/1) AQﬁl\/I]W

n

1
m = :
KN M nt - Xin,
i=0
~0.5/Hnrm

(n+1) é Xin — <;Z:O XZ'A>2

(n -+ 1)26]2WME\IMMF (QﬁMM>

RMM =

where log, (-) is the base-2 logarithm.
Under some mild regularity conditions, WXY derive the asymptotic distributions of

MM estimators with 7' = nA denoting the time span of the data:

~ d Y1 + X0 — 2%
Jn (HMM _ H) LYY, <o, 1 (2112122)2 12) as A — 0
vnoooo d Y11+ Yo — 2812 4
I (1/A) (Cpmm —o) = N {0, 2l2)? o°) as A — 0;

T 1 (G — ) i/\/’(O,aQ//ﬁz) as A — 0,7 — oo, T'"HAH _ 0

VT Rarng — £) % N (0, kpp) as A — 0,T — oo, VTAH — 0 for H € (0,3/4);

T 1
VT =) S A (0595 a5 A S 0.7 - 00, VTAH /In(T) — 0 for H = 3/4;
In(T") 9
7220 (3 —n)ﬁﬂfz as A = 0,T — oo, T* 2HAH 5 0 for H € (3/4,1);
MM HP(2H+1) ) ) ) )

where R is a Rosenblatt random variable, and the expressions for 311, Y92, X192, ¢ are
presented in WXY.
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Remark 5.1 The asymptotic theory of the MM estimators is more complicated than
that of the ML estimators in three aspects. First, for the MM estimators, the asymptotic
theory of H and o is based on the in-fill asymptotic scheme, whereas the asymptotic
theory of k and p is developed under the double scheme. In contrast, the asymptotic
theory of all ML estimators is derived uniformly under the long-span asymptotic scheme.
Second, the asymptotic theory of the MM estimator of k is discontinuous in terms of
both the convergence rate and the limiting distribution at H = 3/4, which makes the
asymptotic theory challenging to apply when the confidence interval of H include 3/4.
On the other hand, the asymptotic theory of the ML estimator of Kk is unique, with the
asymptotic variance being a continuous function of the value of H. Third, the limit

distribution for Kyrar becomes non-standard when H € (3/4,1) but remains Gaussian

for Kkr.

Remark 5.2 Since the asymptotic schemes used by MM and ML are different, we can-
not compare their asymptotic efficiency based on the asymptotic theory. We will examine
their finite-sample performance using simulated data. Since MM only uses limited infor-

mation, it is expected that ML would be more efficient than MM.

Remark 5.3 The MM estimators have closed-form expressions, a feature making the
MM estimation extremely easy to implement. Whereas, the ML estimates must be cal-

culated via numerical optimizations, which are computationally more costly.

Being concerned about the high computational cost of the exact ML method, Benned-
sen et al. (2024) propose to use the MCL method of Lindsay (1988) to estimate pa-
rameters in fOU where the composite log-likelihood function is a weighted product of
densities of marginal or conditional events. When p is known, let EMCL be the MCL es-
timators of 5 and f be the probability density of X that is defined on a probability space
(Q, F, P). Suppose (An,)M_, is a collection of events with A,, € F and the likelihood
L, (B) x f(X € Ap; 8). Then the composite likelihood is defined as

M
CL(B) = [[ Lm(B)"™, (5.1)
m=1
where wy, ..., wy are nonnegative weights with )" w., = 1.3 Consequently, the MCL
estimator of § is
Buer = arg mgxln CL(p). (5.2)

3 As suggested by Bennedsen et al. (2024) we can set wy = 1/M.
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Under some mild regularity conditions, Bennedsen et al. (2024) derive the long-span

asymptotic distributions of MCL. That is, as n — oo with fixed A,

Vi (Byer = B8) %N (0,671 (8)) for H € (0,3/4);
\/ﬁ
Ly(n)
n2=2H 212 () (BMCL - ﬁ) 4 UL (B)UR for H € (3/4,1),

(Bucr = 8) SN (0,671 (8)) for H =3/4;

where R is a Rosenblatt random variable, and U (3), G (8), Ly (n), L2 and ¥ are defined
in Bennedsen et al. (2024).

Remark 5.4 As in the case of MM, both the limit distribution and the rate of conver-
gence of B\MC’L crucially depend on the true value of H. When H € (0,3/4), the rate of

convergence is n~ Y2, and the limit distribution is Gaussian. When H = 3/4, the rate of

Ly(n)
and the limit distribution becomes non-standard. This feature makes it challenging to

-1
convergence 1§ v ) . When H € (3/4,1), the convergence rate becomes n2H=2

use in practice when the confidence interval of H includes 3/4. Moreover, since the rate
of convergence of EML is n=Y2, ML is more efficient than MCL when H € [3/4,1).

Remark 5.5 In practice, p is unknown. In the empirical study, Bennedsen et al. (2024)
estimate (i by the sample mean. As in Shi et al. (2024), the asymptotic distribution of
the sample mean is not considered. In principle, one could estimate p by treating CL(S3)
as a function of p as well as 5 as in Bennedsen et al. (2023). If so, as remarked in

Bennedsen et al. (2024), it is difficult to derive the asymptotic distribution for EMCL.

Remark 5.6 Implementing the MCL approach requires a choice of M and {A,,}. How-

ever, little is known about how to guide these choices in practice.

5.2 Simulation results

This subsection will first conduct some simulation studies to investigate the finite sample
performance of the proposed ML method and its relative performance against three exist-
ing estimation approaches: MM, MCL, and AWML. Then, we present other simulation
results to demonstrate the finite sample properties of alternative forecasting approaches.

To do ML estimation, we need to maximize the log-likelihood function given in (4.1)
numerically. The covariance matrix Y is a real symmetric positive-definite Toeplitz

matrix. Gohberg and Semencul (1972) provide formulae that express the inverse of a
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Toeplitz matrix as a difference between products of triangular Toeplitz matrices (see,
for example, Page 174 in Ben-Artzi and Shalom, 1986). Let u = (ug, u1, ..., us) " be the

first column of ¥~! and v = (0, up, ..., ul)T. The inverse matrix can be represented as
1

slo (L (W) L(uw-Lv) L (v)) , (5.3)
U

where L(a) is a lower triangular Toeplitz matrix with the first column equal to a. To
obtain the value of u, we solve the equation ¥ -u = (1,0,...,0)" by applying the
Levinson algorithm proposed by Zhang and Duhamel (1992).

To calculate the determinant of ¥, we adopt the algorithm of Dietrich and Osborne

(1996) as

S| = S0l (70—7,12,;17,@), k=1,....n. (5.4)
where Y; denote the upper-left k& x k block of the covariance matrix ¥ and ~; denote
the vector (71, ... ,yk)T, which is the first column of Xj..

In the first experiment, we simulate 1,000 sample paths from Model (2.3) with xk =
4.446145, p = —2.465673, 0 = 1.172012, A = 1/250, and H taking different values
from 0.1 to 0.8.# When implementing MCL, we follow the suggestion of Bennedsen et
al. (2023) by using the pairwise likelihood of all pairs of observations with a maximum
of K periods distance between them for some fixed integer K > 0 such as (Xa, Xoa),
(Xon, X3A) 5o vty (X(n_l)A,XnA), (XA, X3A)se - ,(X(n_K)A,XnA) with K = 5. We also
choose the equal weight.® Simulation results, including the mean and the standard
deviation (SD), are reported in Table 5 when n = 2500 and Table 6 when n = 500.

According to Table 5, ML always performs better than AWML, followed by MCL,
and then by MM for H, o, in terms of the standard deviation. The improvement of
ML over AWML becomes more apparent as H increases, consistent with the findings
in Table 4. Moreover, although the ML estimate of p is similar to the sample mean, it
provides greater accuracy for estimating p when H > 1/2. Similar conclusions can be
obtained from Table 6 when the sample size is n = 500. Compared with Table 5, we can
see that the improvement by ML over AWMLis more significant when the sample size is
smaller. This is not surprising since the Whittle method gives a poorer approximation to
the log-likelihood function when n becomes smaller. We also investigate the simulation
results when H is fixed to be 0.260573 and the other parameters (o, u, and k) take

4Note that H = 0.260573, k = 4.446145, . = —2.465673, 0 = 1.172012 are the estimated values by
the ML method when Model (2.3) is fitted to the logarithmic daily RV of SPY index.

SUnlike Bennedsen et al. (2024) where p is estimated by the sample mean, we estimate u together
with other parameters.
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various values. The findings are qualitatively unchanged, and the simulation results are
reported in the Online Supplement.

Next, we investigate the finite-sample properties of alternative forecasting formulae
when a discrete sample is simulated from fOU. We set H = 0.260573, k = 4.446145, 4 =
—2.465673,0 = 1.172012,n = 2500, A = 1/250 and assume that all parameters are
known for generating forecasts. Thus, no estimation is needed. Then, we simulate 2500
observations for each replication. Alternative forecasting formulae are used to generate
h-step-ahead-forecasts with h = 1,2, ...5, where the first 2500 — h observations are used
to generate forecasts. Finally, we set the number of replications to 10000 and calculate
RMSE. The theoretical RMSE of the optimal forecast can be obtained as the square

root of the formula given in (3.6):

. T .
Theoretical RMSE of the optimal forecast = \/ YoA — <’y,(ZOA'nA)> y-1 ('y}(LOA'nA)) .

All results are reported Table 7.

It is evident from Table 7 that the RMSE of the optimal forecast obtained from
(3.5) is significantly lower than that of WXY and is close to the theoretical RMSE of
the optimal forecast. This finding indicates that when a discrete sample is available, it
is much better to use the conditional mean than the discretized formula of Fink et al.
(2013) to perform out-of-sample forecasts.

Results in Table 7 are obtained from the fOU model with known parameters. In prac-
tice, parameters are always unknown. To compare the magnitude of the forecast error
generated by alternative estimation methods and that generated by alternative forecast-
ing formulae, we perform h-step-ahead-forecast for h = 1,2,...5) using the following
combinations of methods: (i) ML-estimated fOU together with the optimal forecast
formula; (ii) MM-estimated fOU together with forecast formula from WXY; (iii) MM-
estimated fOU together with the optimal forecast formula. The RMSE, obtained from
1000 replications, is reported in Table 8. The ML estimate together with the optimal
forecast formula consistently produces the lowest RMSE while the MM estimate with
the forecast formula of WXY produces the highest RMSE.

SWe also set H = 0.260573,x = 4.446145, n = —2.465673,0 = 1.172012,n = 2500, A = 1/250 for
simulating paths and then simulate 2500 observations for each replication.
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Table 5: Finite-sample properties of alternative estimation methods for (H, o, 1, k) with
various values of H € [0.1,0.8], n = 2500 and A = 1/250.

K H o o B K H " o
Method True value 4.446145 0.100000 -2.465673 1.172012 ::: 4.446145 0.200000 -2.465673 1.172012
Mean  8.156956 0.118790 -2.465673 1.172012 ::: 6.712958 0.218491 -2.466795 1.186114

MM SD 4.684829 0.026262 0.035257 0.178282 ::: 2.417307 0.021499 0.039498 0.139869

MCL Mean  4.377534 0.098558 -2.465673 1.172012 :::: 4.719830 0.198960 -2.466795 1.059644
SD 1.759199 0.010438 0.035257 0.060048 :::: 1.488801 0.012786 0.039498 0.069837

AWML Mean  4.386454 0.100685 -2.465673 1.122004 ::: 4.728565 0.201129 -2.466795 1.071825
SD 1.385191 0.008765 0.035257 0.050256 :::: 1.134422 0.011305 0.039498 0.062491

ML Mean  4.414050 0.099564 -2.465366 1.114195 ::: 4.745714 0.199569 -2.467258 1.061235

SD 1.302335 0.008337 0.035032 0.047689 :::: 1.039778 0.010893 0.038043 0.059646

Method True value 4.446145 0.300000 -2.465673 1.172012 ::: 4.446145 0.400000 -2.465673 1.172012
Mean 6.450341 0.320539 -2.469253 1.144823 ::: 5.957557 0.417467 -2.468329 1.075316

MM SD 2.046180 0.021207 0.046898 0.134499 ::: 1.689577 0.024037 0.056664 0.141014

MCL Mean  4.777123 0.297896 -2.469253 1.004397 :::: 4.812129 0.397886 -2.468329 0.956567
SD 1.398119 0.014596 0.046898 0.077195 ::: 1.307882 0.015592 0.056664 0.081674

AWML Mean  4.867030 0.301485 -2.469253 1.024141 :::: 4.938722 0.401530 -2.468329 0.978457
SD 1.147865 0.013025 0.046898 0.071010 ::: 1.154986 0.014138 0.056664 0.076213

ML Mean  4.943190 0.300428 -2.469217 1.015806 :::: 4.950238 0.401050 -2.467967 0.970743

SD 0.989681 0.012164 0.045083 0.069604 :::: 0.989768 0.013187 0.055837 0.075642

Method True value 4.446145 0.500000 -2.465673 1.172012 ::: 4.446145 0.600000 -2.465673 1.172012
Mean  5.726407 0.514194 -2.470754 1.009054 ::: 5.696879 0.611020 -2.471359 0.948085

MM SD 1.601530 0.024194 0.063526 0.142505 ::: 1.473072 0.026258 0.079252 0.144096

MCL Mean  5.298567 0.497599 -2.470754 0.910476 :::: 5.175769 0.599687 -2.471359 0.877655
SD 1.275910 0.016580 0.063526 0.086135 ::: 1.247941 0.015706 0.079252 0.082508

AWML Mean  4.760709 0.500665 -2.470754 0.932938 ::: 4.540656 0.593493 -2.471359 0.867837
SD 1.101151 0.013744 0.063526 0.072981 ::: 1.137011 0.015748 0.079252 0.078219

ML Mean  5.069599 0.501704 -2.471067 0.928959 ::: 5.265544 0.604879 -2.471462 0.903227

SD 0.867731 0.014314 0.061942 0.076531 ::: 0.776515 0.015503 0.075429 0.072082

Method True value 4.446145 0.700000 -2.465673 1.172012 ::: 4.446145 0.800000 -2.465673 1.172012
Mean  5.892033 0.708439 -2.468226 0.893418 ::: 6.566816 0.803186 -2.471829 0.825635

MM SD 1.621508 0.026426 0.092693 0.155205 ::: 1.729948 0.023800 0.112849 0.147738

MCL Mean  5.608306 0.702819 -2.468226 0.855271 ::: 7.224908 0.813702 -2.471829 0.898949
SD 1.395668 0.019954 0.092693 0.111477 :::: 2.353120 0.026157 0.112849 0.190412

AWML Mean  4.216008 0.674462 -2.468226 0.771517 :::: 3.341247 0.718672 -2.471829 0.581523
SD 1.106270 0.023748 0.092693 0.082672 ::: 1.086899 0.051058 0.112849 0.112479

ML Mean  5.529380 0.707212 -2.468218 0.875505 ::: 5.813537 0.807403 -2.468201 0.842374

SD 0.667337 0.016117 0.088656 0.080267 :::: 0.470220 0.015519 0.106023 0.094978
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Table 6: Finite-sample properties of alternative estimation methods for (H, o, 1, k) with
various values of H € [0.1,0.8], n = 500 and A = 1/250.

K H o o B K H “w o
Method True value 4.446145 0.100000 -2.465673 1.172012 ::: 4.446145 0.200000 -2.465673 1.172012
Mean 4.890346 0.098944 -2.476788 1.255459 ::: 5.600519 0.198973 -2.476219 1.245837

MM SD 4648676 0.071484 0.142294 0.498106 ::: 5.033509 0.068318 0.149269 0.474832

Mo | Mean 5321656 0.085616 -2.476788 1120797 w::: 5.672340 0.197606 -2.476219 1.174534
SD  4.682424 0.049333 0.142294 0.242316 ::: 4.087221 0.036959 0.149269 0.194905

Awnp,  Mean 5376004 0.104625 -2.476788 1.20503L :x: 6.760823 0.206847 -2.476219 1.225128
SD  4.051980 0.019671 0.142294 0.119223 ::: 3.661555 0.025436 0.149269 0.161697

ML Mean  4.370875 0.008775 -2.476871 1.160990 w:: 4.840050 0.195802 -2.476658 1.151613

SD  1.899732 0.016819 0.128469 0.097643 ::: 1.582566 0.022568 0.129050 0.131427

Method True value 4.446145 0.300000 -2.465673 1.172012 :::: 4.446145 0.400000 -2.465673 1.172012
vN | Mean  6.108450 0298812 -2.479240 1236516 :::: 6.418008 0.398458 -2.480264 1.227081

SD  4.626418 0.065207 0.156573 0.454829 ::: 4.248231 0.062580 0.164935 0.436086

Mo | Mean 6211983 0300797 -2.479240 L187773 =i 6.686706 0.402660 -2.480264 1.202163
SD  3.860853 0.031967 0.156573 0.197988 ::: 3.837283 0.034619 0.164935 0.226809

Awn  Mean 7356816 0.308567 -2.479240 1.245800 :x: 7.680350 0.400084 -2.480264 1267572
SD  3.599389 0.028792 0.156573 0.193882 ::: 3.664320 0.030713 0.164935 0.220704

ML Mean  4.989880 0.203346 -2.480837 1.135453 = 5.015213 0.391007 -2.483494 1.125673

SD 1.413288 0.025424 0.153477 0.150430 ::: 1.323559 0.027568 0.163325 0.167783

Method True value 4.446145 _0.500000 -2.465673 1.172012 :::: 4.446145_0.600000 -2.465673 1.172012
Mv | Mean  6.752937 0497856 -2.480863 1218922 :::: 7.203506 0.507288 -2.478460 1211124

SD  3.969060 0.060020 0.175457 0.430581 ::: 3.937838 0.056607 0.186765 0.426452

Mo | Mean 7345850 0505780 -2.480863 1227848 w:: 8.270592 0.611950 -2.478460 1.286097
SD  4.058504 0.037319 0.175457 0.259587 ::: 4.575060 0.041023 0.186765 0.325562

AwM  Mean  6.689375 0499791 -2.480863 1232196 ::: 5.554368 0.574880 -2.478460 1.142277
SD  3.433822 0.025843 0.175457 0.190099 ::: 3.109976 0.032238 0.186765 0.200919

ML Mean  5.041528 0.490045 -2.486004 1.117037 w: 5.050404 0.590785 -2.485460 1.113263

SD  1.240879 0.029039 0.169596 0.182116 ::: 1.155138 0.029616 0.174071 0.194905

Method True value 4.446145 0.700000 -2.465673 1.172012 :::: 4.446145 0.800000 -2.465673 1.172012
M Mean  7.665527 0.696968 -2.479808 1211898 ::: 8.467536 0.797285 -2.481418 1.239616

SD  3.834607 0.053985 0.196360 0.441561 ::: 4.009864 0.051876 0.204945 0.531494

Mo | Mean  10.216937 0.725007 -2.479808 1466824 w::: 14.017574 0.846455 -2.481418 1.861672
SD  6.252785 0.049906 0.196360 0.552863 ::: 7.253496 0.049643 0.204945 0.698690

AwM  Mean  4.833263 0.625256 -2.470808 0.073818 ::: 3.74884G 0.632161 -2.481418 0.702181
SD  2.782346 0.046913 0.196360 0.272416 ::: 2.244837 0.041092 0.204945 0.147202

ML Mean  5.030314 0.691695 -2.487910 1.118168 :: 4.916638 0.794567 -2.490307 1.145867

SD 1.070439 0.030520 0.178050 0.217682 ::: 1.144566 0.032204 0.179683 0.139612

23



Table 7: RMSE by the alternative forecasting methods of fOU for h-day-ahead-forecast.

h 1 2 3 4 5
WXY 0.28198 0.30920 0.39320 0.46225 0.55091
Optimal forecasts 0.20021 0.22527 0.24292 0.26828 0.28951

Theoretical RMSE of the optimal forecast 0.22048 0.26020 0.28081 0.30540 0.32085

Table 8: RMSE by the alternative estimation approaches and forecasting methods of fOU for
h-day-ahead-forecast.

h 1 2 3 4 5
MM+WXY 0.30657 0.32874 0.36024 0.46515 0.51902
MM+optimal forecast 0.25943 0.27560 0.31933 0.33432 0.38616
ML+optimal forecast 0.21918 0.25905 0.27602 0.29334 0.31546

6 Empirical Studies
6.1 Estimation results

We fit the fOU model given in (2.3) to the logarithmic daily RV series for the Standard
and Poor’s (S&P) 500 index exchange-traded fund (ETF) and the nine industry ETFs,
with the tick symbols SPY, XLY, XLP, XLE, XLF, XLV, XLI, XLLB, XLK, and XLU.
The sample period is from January 5, 2016, to December 31, 2020. We download the data
from the Risk Lab of Dacheng Xiu.” The left panel of Table 9 provides the estimation
results for the fOU Model using four different estimation methods: ML, AWML, MM,
and MCL. The estimated H is less than 0.5 in all cases, suggesting all RV series are
rough.® Interestingly, in most cases, the ML estimate of each parameter takes a value
closer to the AMWL estimates and further away from their MCL and MM counterparts.
The ML estimates of H range from 0.203121 for XLP to 0.260573 for SPY.

We also fit Model (2.3) to the logarithmic daily trading volume series for the same
asset over the same period.” The results are reported in the right panel of Table 9.
The empirical results are generally similar to what was found for the log RV series. For
example, all estimates of H are much less than 0.5; the point estimates from ML are

close to those from AWML. Moreover, the point estimates of H for volume series are

"https://dachxiu.chicagobooth.edu/\#risklab.

8However, it is important to note that this finding does not necessarily imply that the integrated
volatility (IV) series is rough, for there are estimation errors in RV. Since one of our interests in modeling
RV is to forecast future RV not IV, it is important for us to find a good model for RV for this particular
purpose, as it is typically done in the literature; see, for example, Andersen et al. (2003).

9The trading volume data are downloaded from Yahoo Finance at the daily frequency.
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smaller than those for their RV counterparts — the ML estimates of H range between
0.105369 for XLU and 0.186572 for XLI.

6.2 Forecasting performance of fOU

We now compare the performance of fOU in forecasting RV after it is fitted to the log RV
series by alternative estimation methods: ML, MCL, and MM. When forecasting future
RV, we replace the underlying parameters in fOU with these alternative estimates and
use both the optimal forecasting formula and the forecasting formula of WXY. Then, we
evaluate the forecasting performance of the competing approaches based on RMSE. We
further check the statistical significance between competing methods using the Diebold-
Mariano (DM) test of Diebold and Mariano (1995) and the model confidence set (MCS)
of Hansen et al. (2011), respectively.

We split the sample period into two subperiods: from January 4, 2016, to December
31, 2020, and from January 4, 2021, to December 30, 2022. For each day in the second
period, the fOU model is fitted to observations over the most recent 5 years using
one of three estimation methods (ML, MCL, and MM), then, h-day-ahead (with h =
1,5) forecasts of daily RVs are obtained using one of the two forecasting formulae.
In total, we have six alternative combinations: (i) the ML estimate together with the
optimal forecasting formula, (ii) the MCL estimate together with the optimal forecasting
formula, (iii) the MM estimate together with the optimal forecasting formula, (iv) the
ML estimate together with the forecasting formula of WXY, (v) the MCL estimate
together with the forecasting formula of WXY, and (vi) the MM estimate together with
the forecasting formula of WXY.

Table 10 reports RMSE from the six combinations above. The best result is high-
lighted in boldface.! It is evident that the ML estimates together with the optimal
forecasting formula always performs the best.

To investigate if forecasts from the ML estimate together with the optimal forecast-
ing formula are statistically significantly different from those of other methods, Table
11 reports the DM statistic based on the squared forecast errors and the p-value (in
parenthesis) with the benchmark being the ML estimate together with the optimal fore-
casting formula (boldface means statistically significant at the 10% level). According to
the DM test, regardless of forecasting horizons, forecasts by the ML estimate together

with the optimal forecasting formula are statistically different from those by four out

By Gaussianity of fOU, the h-step-ahead predictor of RV = exp(X;) is I/H\/Hh =
exp (E [X¢qn | Fi] + 5 Var [Xeqn | Fe]) where F denotes the sigma algebra of Xo, X1,..., X;.
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Table 9: Empirical results
XLI, XLB, XLK and XLU.

for In(RV') and ln(volume) of SPY, XLY, XLP, XLE, XLF, XLV,

Name Method

In(RV)

In(volume)

K

H

m o

K H

I

g

SPY

ML
AWML
MM
MCL

4.446145
4.606861
5.823982
2.577467

0.260573
0.253570
0.298035
0.246340

-2.465673 1.172012
-2.462327 1.491415
-2.462327 1.453865
-2.462327 1.090190

4.215973 0.157989
5.389794 0.166988
4.175881 0.165010
4.357776 0.165575

0.003779
0.007365
0.007365
0.007365

0.797597
1.491415
0.824279
0.829422

XLB

ML
AWML
MM
MCL

0.966455
1.038395
1.963080
1.152012

0.204695
0.211580
0.225311
0.202513

-2.091105 0.722440
-2.134613 0.979263
-2.134613 0.810170
-2.134613 0.715899

12.728688 0.179482
11.446955 0.175527
16.305692 0.192629
16.265946 0.192508

0.001678
0.006391
0.006391
0.006391

1.114306
1.092911
1.196384
1.192435

XLE

ML
AWML
MM
MCL

2.137154
1.550811
9.152197
1.609472

0.249324
0.250046
0.383350
0.215789

-1.750971 0.751446
-1.780489 0.869432
-1.780489 1.624795
-1.780489 0.637802

0.075829 0.130348
4.648608 0.145728
8.281561 0.255476
5.392826 0.151157

0.098003
0.019849
0.019849
0.019849

0.696664
0.753164
1.385716
0.778478

XLF

ML
AWML
MM
MCL

2.018703
2.969242
8.361772
2.385198

0.222482
0.233993
0.305953
0.225746

-1.952330 0.791754
-2.044372 1.207683
-2.044372 1.266752
-2.044372 0.809569

8.033162 0.167030
9.092342 0.170730
14.813948 0.205067
9.153149 0.172800

0.003403
0.002399
0.002399
0.002399

0.899647
0.920720
1.106793
0.928295

XLI

ML
AWML
MM
MCL

1.459491
1.709495
1.219409
1.420062

0.216333
0.220056
0.210275
0.216198

-2.189787 0.813539
-2.214138 1.046251
-2.214138 0.785424
-2.214138 0.813290

13.149749 0.186572
14.454120 0.192757
17.077446 0.197713
22.161701 0.215806

0.000596
0.004057
0.004057
0.004057

1.064284
1.101224
1.121563
1.246909

XLK

ML
AWML
MM
MCL

1.668544
2.219921
5.903950
2.731487

0.220104
0.225226
0.276237
0.229932

-2.143940 0.940939
-2.162469 1.218899
-2.162469 1.286163
-2.162469 0.994593

9.847038 0.169502
8.432843 0.164798
12.125780 0.187591
8.096917 0.164745

0.000818
0.000616
0.000616
0.000616

0.985028
0.963668
1.092152
0.959579

XLP

ML
AWML
MM
MCL

0.524153
0.619573
0.701563
0.636387

0.203121
0.212002
0.133317
0.208451

-2.331152 0.744684
2.384502 1.110369
-2.384502 0.502381
2.384502 0.762438

8.222255 0.141522
9.101073 0.146887
17.487814 0.134950
15.317032 0.171262

0.002616
0.004432
0.004432
0.004432

0.883951
0.908799
0.844310
1.031199

XLU

ML
AWML
MM
MCL

0.867652
0.975011
0.905570
1.204449

0.218259
0.219525
0.197875
0.208877

-2.021525 0.664237
-2.051622 0.939547
-2.051622 0.595602
-2.051622 0.632280

0.865405 0.105369
7.077768 0.123771
21.778640 0.182866
11.383995 0.127858

-0.033946
-0.002357
-0.002357
-0.002357

0.645621
0.710282
0.975192
0.772601

XLV

ML
AWML
MM
MCL

2.842219
2.478489

0.225034
0.226379

-2.245561 0.816055
-2.247078 0.976172

3.012977 0.239137 -2.247078 0.885550

1.764479

0.213311

-2.247078 0.767777

9.203585 0.165271
9.037310 0.165609
24.995825 0.238078
9.605133 0.166686

-0.000349
0.004742
0.004742
0.004742

0.944645
0.948439
1.417276
0.953507

XLY

ML
AWML
MM
MCL

2.607289
2.134027
3.850248
1.930542

0.223217
0.223342
0.257546
0.221440

-2.269736 0.908920
-2.279545 1.182996
-2.279545 1.103246
-2.279545 0.902707

1.106239 0.121481
4.892674 0.133971
7.493364 0.084882
5.534828 0.143275

0.010246
0.004820
0.004820
0.004820

0.768686
0.820746
0.623389
0.857084
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Table 10: RMSE for h-day-ahead-forecast of RV of fOU using three different estimation methods
and two different forecasting methods.

Time series SPY XLB XLE XLF XLI XLK XLP XLU XLV XLY

Panel A: h =1
MM+WXY  0.3315 0.3241 0.3114 0.3171 0.3001 0.3084 0.3144 0.3131 0.3184 0.3019
MCL+WXY 0.3272 0.3216 0.3054 0.3092 0.2994 0.2947 0.3090 0.3034 0.3107 0.2969
ML4+WXY  0.3091 0.2904 0.3005 0.3059 0.2813 0.2867 0.2938 0.2911 0.2919 0.2906
MM+optimal 0.3155 0.3136 0.2931 0.2833 0.2824 0.2809 0.2892 0.2968 0.2917 0.2845
MCL+optimal 0.2973 0.2803 0.2751 0.2695 0.2743 0.2780 0.2657 0.2701 0.2793 0.2779
ML+optimal 0.2905 0.2753 0.2673 0.2634 0.2699 0.2622 0.2516 0.2585 0.2527 0.2598
Panel B: h =5
MM+WXY  0.3718 0.3693 0.3618 0.3677 0.3675 0.3563 0.3543 0.3596 0.3660 0.3574
MCL+WXY 0.3536 0.3468 0.3490 0.3485 0.3416 0.3358 0.3430 0.3347 0.3309 0.3472
ML+WXY  0.3624 0.3546 0.3521 0.3516 0.3482 0.3391 0.3488 0.3448 0.3521 0.3488
MM+optimal 0.3501 0.3460 0.3483 0.3434 0.3389 0.3317 0.3405 0.3308 0.3343 0.3433
MCL+optimal 0.3456 0.3356 0.3294 0.3327 0.3324 0.3220 0.3342 0.3251 0.3236 0.3397
ML+optimal 0.3342 0.3306 0.3229 0.3246 0.3369 0.3239 0.3245 0.3234 0.3146 0.3287

of five methods for all assets. They are statistically different from the MCL estimate
together with the optimal forecasting formula for two assets.

To determine whether the predictive model belongs to the set of ‘best’ predic-
tive models or not, Table 12 reports the p-value of MSC obtained from 2,000 boot-
strap iterations with a block length of 12. Values in boldface indicate that the model
belongs to the confidence set of the best models. Moreover, the method with a p-
value smaller than 10% should be removed from the best models’s set. From Table
12, at the 1-day horizon, we can see that MM-estimate-with-the-forecasting-formula-of-
WXY, the MCL-estimate-with-the-forecasting-formula-of-WXY, the ML-estimate-with-
the-forecasting-formula-of-WXY, and the MM-estimate-with-the-optimal-forecasting-formula
are always rejected. The MCL-estimate-with-the-optimal-forecasting-formula is rejected
in one case. Whereas, the ML-estimate-together-with-the-optimal-forecasting-formula is
not rejected in any case. Similar conclusions can be drawn at the 5-day horizon. We
also investigate the performance of alternative methods in forecasting In(RV') of these
selected ten ETFs. These results are qualitatively unchanged and are reported in the

Online Supplement.

7 Conclusion

How to estimate fOU has received a great deal of attention in the statistics literature,
where a common assumption is that a continuous record of observations is available. In

recent years, fOU has been found successful in modeling volatility and trading volume.
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Table 11: DM statistic for h-day-ahead-forecast of RV of fOU using three different estimation
methods and two different forecasting methods (the benchmark model is ML with optimal).

Time series SPY XLB XLE XLF XLI XLK XLP XLU XLV XLY
Panel A: h=1
MMAWXY -3.5949  -3.2622 -3.6028 -3.7112 -3.2217 -3.1174 -3.2967 -3.3188  -3.4242 -3.5079
(0.0002) (0.0006) (0.0002) (0.0001) (0.0006) (0.0009) (0.0005) (0.0005) (0.0003) (0.0002)
MCLAWXY -2.8147 -2.9058 -2.7270 -2.9134 -2.6324 -2.6975 -2.2785 -2.5469 -2.9575 -2.9649
(0.0024) (0.0018) (0.0032) (0.0018) (0.0042) (0.0035) (0.0113) (0.0054) (0.0016) (0.0015)
MLAWXY -1.6576  -1.5286  -2.0572 -1.9854 -2.0430 -1.6419 -1.9218 -1.8138 -2.0244 -1.6369
(0.0487) (0.0632) (0.0198) (0.0236) (0.0205) (0.0503) (0.0273) (0.0349) (0.0215) (0.0508)
MM+optimal -2.0246 -2.4706  -2.1793  -2.2472  -2.3003 -2.1062 -2.0945 -2.4157  -2.2922 -2.4595
P (0.0215) (0.0067) (0.0147) (0.0123) (0.0107) (0.0176) (0.0181) (0.0079) (0.0109) (0.0070)
MCL+optimal -1.2194 -1.0159 -1.1385 -1.0231 -1.0486 -1.4117 -1.1908 -1.1585 -1.4751 -1.0172
p (0.1114) (0.1548) (0.1275) (0.1531) (0.1472) (0.0790) (0.1169) (0.1233) (0.0701) (0.1545)
Panel A: h=5
MMAWXY -3.4121  -2.0637 -2.5538 -2.0923 -2.1943 -3.6469 -3.3897 -2.6342 -3.9004 -2.0689
(0.0003) (0.0195) (0.0053) (0.0182) (0.0141) (0.0001) (0.0003) (0.0042) (0.0000) (0.0193)
MCL4+WXY -2.4387 -1.9650 -2.1655 -1.9952 -2.1869 -2.4898 -2.4456 -2.6063 -2.7094 -1.8547
(0.0074) (0.0247) (0.0152) (0.0230) (0.0144) (0.0064) (0.0072) (0.0046) (0.0034) (0.0318)
MLLWXY -1.8407  -1.5243  -1.8143 -1.2435 -1.9293 -1.3500 -1.9166  -1.5211 -1.6160 -1.4733
(0.0328) (0.0637) (0.0348) (0.1068) (0.0268) (0.0885) (0.0276) (0.0641) (0.0530) (0.0703)
MM +optimal -2.2513  -1.7551 -2.0060 -1.8352 -1.9869 -2.4593 -2.0472 -1.6386 -1.6493 -1.7575
P (0.0122) (0.0396) (0.0224) (0.0332) (0.0235) (0.0070) (0.0203) (0.0506) (0.0495) (0.0394)
MCL+optimal -1.1510 -1.3187 -1.0636 -1.0923 -1.0509 -1.0476 -1.3043 -1.2029 -1.1925 -1.0507
P (0.1249) (0.0936) (0.1437) (0.1373) (0.1466) (0.1474) (0.0961) (0.1145) (0.1165) (0.1467)

However, like most economic and financial variables, volatility and trading volume are
measured at discrete time points. As a result, estimating fOU with a discrete sample
becomes a new research focus in the fOU literature.

In the present paper, we first derive two analytical formulae for the autocovariance
function of discretely sampled observations from fOU. These formulae facilitate calculat-
ing the likelihood function, the ML estimates, and the optimal forecast formula proposed
in the paper in terms of accuracy and computational cost. Applying the derived ana-
lytical formula, we investigate how well the Whittle likelihood can approximate the true
likelihood. Under empirically realistic settings, it is shown that the Whittle approxima-
tion can be far away from the exact likelihood function, especially when the sample size
is small, say 500, or when H is large. Therefore, the AWML estimator for the parameters
in fOU studied by Shi et al. (2024) may have a poor finite sample performance, although
is asymptotic efficient. The MM and MCL estimators proposed in the literature are not
efficient, for only using limit information of the likelihood function.

We, therefore, propose using the exact ML method to estimate the parameters in fOU
and develop a long-span asymptotic theory for the ML estimator. Unlike the existing

estimation approaches where the location parameter  is estimated separately from other
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Table 12: p-values of MSC for h-day-ahead-forecast of RV of fOU using three different estimation
methods and two different forecasting methods (the benchmark model is ML with optimal).

Time series SPY XLB XLE XLF XLI XLK XLP XLU XLV XLY

Panel A: h=1

MM+WXY  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MCL+WXY 0.0178 0.0139 0.0124 0.0140 0.0110 0.0113 0.0194 0.0196 0.0158 0.0106
ML+WXY  0.0429 0.0976 0.1321 0.0715 0.0843 0.0669 0.1149 0.0711 0.0448 0.0951
MM+optimal 0.0735 0.0853 0.0687 0.0636 0.0647 0.0506 0.0709 0.0232 0.0218 0.0695
MCL+optimal 0.2392 0.1893 0.2404 0.2567 0.1833 0.1676 0.1945 0.1978 0.0936 0.1262
ML+optimal 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Panel B: h =5

MM+WXY  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MCL+WXY 0.0143 0.0231 0.0501 0.0115 0.0364 0.0465 0.0344 0.0389 0.0219 0.0309
ML+WXY  0.0628 0.0768 0.1121 0.0831 0.0843 0.0618 0.1185 0.0999 0.0850 0.0830
MM+optimal 0.0330 0.0341 0.0821 0.0336 0.0561 0.0548 0.0709 0.0709 0.0661 0.0375
MCL+optimal 0.2489 0.2278 0.2959 0.2473 0.2700 0.2181 0.2149 0.2738 0.1625 0.1700
ML+optimal 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

parameters, the ML approach simultaneously estimates p and other parameters in fOU.
It has been proved that the ML estimator is consistent and has asymptotic normality
for all values of H € (0,1), with the convergence rate and the asymptotic variance
being continuous functions of H. This feature facilitates statistical inference and is in
sharp contrast with the asymptotics of the MM and MCL estimators, whose asymptotic
theories have a jump at the point of H = 3/4.

Simulations are performed to demonstrate the feasibility and effectiveness of the ML
estimation approach and the optimal forecast formula proposed when a discrete sample is
available. Simulation results show that the ML method outperforms the MM, MCL, and
AWML methods in finite samples, and the proposed optimal forecast formula performs
better than the other forecasting methods applied in the literature.

When fitting the fOU process to the RV and trading volume series of ten ETFs,
strong evidence of H < 0.5 is found. Moreover, empirical studies also show that forecasts
generated using the optimal forecasting formula with parameter estimates from the ML
approach are significantly more accurate than those generated using combinations of
other forecasting formulas and estimation methods.

In practice, we suggest empirical researchers to first use MCL or AWML or even MM
methods to obtain initial estimates of parameters in fOU. Then our exact ML method is
used to the final estimates of all four parameters in fOU. When implementing the exact
ML method, the MCL or AWML or MM estimates can serve as the initial value during
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the numerical optimization.

There is much room for future research. First, our results focus on the stationary
fOU process. The exact ML estimator for the explosive fOU process has not been
investigated. We plan to pursue this line of research in future work. Second, this paper
considers the univariate Gaussian fOU process. It is worthwhile to consider relaxing
the Gaussianity assumption and extending the results to the multivariate case. Both
generalizations seem rather complicated. Third, investigating the finite sample bias of

the ML estimators would be meaningful work.

8 Appendix

Proof of Lemma 2.1: (a) Let us first prove (2.12). Let Xo = p+o fi)oo e"dBH | which
has the distribution of N (u,c?HT (2H) /k**) when £ < 0. Then the fOU process
defined in (2.3) has the following discretization

t ¢
Xi—p=e " (Xg— M)Jra/ e M=) qBH — ¢=rt (X — M)JrUBflnae_“t/ e™ BH s,
0 0

where the second equation is obtained by using integration by parts.
Let )A(/t =Xy —u, S = UB{I — koe ft fg e’“BSHds. It is straightforward to get that

)’Zt = e_”tf(o + S, (81)
and

Cov (X, X.) = Cov (X, X,

— Cov (S, S5 ) + e Cov ()?O,ss) + e Cov (St,)?o) T CRTA (5(’0) . (82)

As {X;} is a covariance stationary process when x < 0, without losing generality, we

only derive the expression of Cov (Xy, X;) for s < t. From (2.2), we have

t s
Cov(S;, Ss) =E [(—nae_“t / e BH qu, + JB;H> <—/<aae_“s / e BH dv + an)]
0 0
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x
ml
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ﬁ
D
|

S S
w2H gy Iy = —/fe_’“/ ey, I = /ie_"s/ e (t —v)*dv,
0 0
t s
I; = t2H + S2H _ (t _ 8)2H, Iy = I{QE_H(H—S)/ em)dv/ eR’LLUQHdu7
0 0
s t
Iy = K2€—n(t+s)/ enudu/ B'WUQHd’U,
0 0
t prs
L = 526_”(t+s)// ")y — o1 du dv.
0J0
It is easy to get

t
I =s*H (e"‘t — 1) and I, = —¢2H + 2He_“t/ ey =1 gy
0

Using the change-of-variable technique by letting z = |s — u|, we can have

s t
I3 =re </ e (s — u)?Hdu + / e (u — s)szu>
0 s

s t—s
:Kefﬁters </ efnzZ2HdZ + / 6&2Z2Hdz>
0 0

s
— _ g rttrs <6—H582H _ 2H/ e—nzZQH—le - e/@(t—s) (t - S)2H
0

t—s
+ 2H/ e”zzQH_ldz>
0

s t—s
- _ e—ntSZH + (t _ S)ZH + 2H€—ﬁt+ﬁs </ e—/@zZQH—ldz _/ emzZQH—le> )
0 0

Similarly, simple calculations with the usage of the change-of-variable technique and

integration by parts yield the results of
L=t (e7" —1),
S
1'5 — —82H + 2He—/is/ €m)’l)2H_1d’U,
0
t
Iﬁ — _e—ﬁstZH + (t o 8)2H + 2H€—ns+nt/ e—f{zz2H—1dZ’
t—s
S
Ig=(1—e"s2H _9He (1 — e”t)/ eMuu?H 1y,
0
¢
Iy =(1— e*'{s)tQH — 2He*“t(1 — e”s)/ e =1y,
0
To calculate the term Iy that involves a double integral, we first get

s s t prs
Lo = —k2e ") </ / er(utv) lu — v|2H du dv + // er(utv) (v —u)?" du dv)
0Jo s J0
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s rv t rs
= —g2e rt+s) <2/ / ") (y — u)2H du dov + // e ) (p — )21 gy, dv)
0J0 5J0

1 2
)

where If(l]) = —2kx2eH(t+s) N () (y—u)2H dy dv and I%) = —kg2eh(t+s) fstfos e utv) (y—

u)* dudv. Letting z = v — u, it has

If(l)) _ _2,{26—n(t+s) /S /v 62ﬁve—nzz2Hdzdv
— K(t+s) / / 2KV e HE 2Hdvdz

— 9% 2 —f@(t—l—s)/ P 2H 6 6 dZ
0 2K

s s
_ —HG_H(H_S) (6253 / e—nzZQHdZ o / GHZZ2HdZ>
0 0

— Qe Rt2H _ 2Hefn(tfs) /S e rE2H-1 0. 2H671{(t+8) /s ez, 2H— 1dz
0 0

where the second equation is obtained by changing the order of the integration. To

(2)

simplify I;’, we derive the result under the condition of £ > 2s. The same result can be
obtained when s < t < 2s by taking the same procedure with some tedious calculations,

which we omit here for simplicity. Again, by letting z = v — u, it has

If?)) — _K;Zefn(tqts) /t/v efnz+2nvZ2HdZdU

— 2 —I'{ (t+s) {(// /t 8/ / /) —Kkz+2KV szUdZ}
t—sJz
KZ+S _
— 2 —Fit KS </ e h% 2 € dZ
0 2K

t—s 2k(z+s) 2Kz t 2kt 2Kz
— € — € _ e — €
+ e HZZQH—dZ + (& Rzz2H7 dz
s 2K i—s 2K

K t—s K t
= —26K(t5)/ e dy 4 26”(”3)/ er? 22y
0 s
k ¢ ° 2H Kkt ! 2H
4+~ 5)/ e 2 2H gy — 2l S)/ e M dz
2 0 2 t—s

t
_ e—nst2H _ e—nts2H _ He—ns—l—l-ct/

s
e—nzZ2H—1dZ + He—nt—i—ns/ e—nzZ2H—1dZ
t—s 0

¢ t—s
_ He—/it—ns / enzz2H—1dZ + He—fit—i—ns / 6nz22H—1dZ _ (t . S)QH.
s 0
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where the second equation is from changing the order of the integration. Finally, we get

9 10
Cov(Sy, S,) = % SNo,
n=1

2 t—s t
_ Ho (_e—ﬁ(t—s)/ eIiZZZH—].dZ + eﬁ(t—s)/ e—HzZ2H—1dZ
2 0 t—s
t s
o efn(tJrs) / enzZ2H71dZ + efn(tfs) / 675222H71d2
s 0
t
+2¢H(tH) / e 20 1d,z) : (8.3)
0

By taking a similar procedure as above, we can derive

> Ho? I'(2H t oe
Cov (St,Xo) _ (o} (_ ( )e—mt _ e—fet/ enzZQH—le + e/@t/ e—KZZQH—le> ’
0 t

9 2H
= Ho? [ T(2H s o0
Cov (SS,X()) _ o . ( )ef,‘{s . el{s/ ez, 2H—1 1 + eﬁs/ ez 2H-1 1 ’
2 K2H 0 .
> o?HT(2H)
Var (XO) =
Substituting the formulae of Cov (S, Ss), Cov (St, Xo ) , Cov (SS, Xo ) , and Var ()?0)

derived above into Equation (8.2), together with the result of fooo e 2 =1y = %,

we can have

Cov (Xt,XS) =A; + Ay +A3, (84)
where
Ho’T'(2H) _
Ay = 21%2([—] )e k(t—s) ,
H02 t—s
Ay = _76—5(1?—5) / enzzQH—ldz ’
2 0
Ay = Ho? oi(t=9) /+oo o h72H-1 g,
2 t—s

Letting x = kz, we then have

Ho2eH(t—s) K(t—s)
Ay = — Ue/ et dy
0

2x2H
H0.2€fn(tfs) k(t—s 2H
- QKQ(H( ) B(1,2H) 1 Fy (2H;1+2H; K (t — s))
H0.26—n(t—s) (R (t o 8))2H 1
- 52H ot Fr QH L+ 2k (8 = 5)), (8.5)
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where the second equation comes from Gradshteyn and Ryzhik (2007) (see, Eq ET II
187(14) of 3.383 on page 347)

/ "N — 2P de = B(p, v)u VT Py (v p+ v Bu) (8.6)
0

with B(-,-) and 1 F} (+;+;-) denoting the Beta function and the confluent hypergeometric

function of the first kind, and the third equation is from

_T()r(2H) 1
B(1,2H)_m_ﬁ.

Similarly, by letting x = Kz, we get

HO.QGH(t—s) +00 . B HO’QBR(t_S)
4= L(ts) ety = =T TR (- 5). (87)

where T'(-, ) is the upper incomplete Gamma function.
Finally, substituting (8.5) and (8.7) into (8.4), we can have

Cov (Xy, X,) =A1 + As + As

2 ,—k(t—s) _ 2H
:% [F(2H) - wlFl(QH; 1+ 2H; k(t — 5))

+ 2D (2H, K(t — 5))| . (8.8)

Replacing ¢ and s in Equation (8.8) with (¢ + j) A and tA, respectively, the analytical
expression in (2.12) is obtained.

(b): First, it is easy to verify that

KjA 1 '
I'(2H; kjA) =T(2H) —/ =1t = T(2H) — (HjA)2H/ G2H—1,—rjls g
0 0

(rj D)

=T(2H) - =

1F1(2H; 2H + 1; —HjA) s (89)

where the second equation is obtained by letting t = kjAs and the third equation comes
from the definition of the 1 F} function.
Using (8.9), we can have

Ho%e ri8 rjA)2H )

‘ W1F1(2H;2H+1;—njA)}- (8.10)



Moreover, by letting s = 1 — ¢ and using the definition of the ; F7 function, it is easy
to show that

1 1
\FL(2H;2H + 13 KjA) = 2H/ {2 leri Al gt = 2He”jA/ (1— )2t emrifsgs
0 0

= A FI(1;2H 4 1; —kjA) . (8.11)
Similarly, we can prove that
\FL(2H;2H 4 1; —kjA) = e ™2 F1(1;2H 4 1; k5 A) . (8.12)

Substituting (8.11) and (8.12) into (8.10), we can rewrite Cov (Xia, X(14/)a) as

H0'2 e—lijA +eﬁjA
Cov (Xia, X(14j)a) = {

A > I'(2H)
iA 2H
_(Wﬂ} WP (132H + 1 —kjA)+ 1Py (1,2H + 1?*”’”} '

(8.13)

Moreover, using the well-known result of 1 Fj(a;b;2) => 7 ((Z;" %, we can obtain
the following results

, = (1) /ijA . T(2H +1)
Fi(1;2H + 1; —kjA) = n
1B (1520 + 1 —kjA) Z(2H+1)n —~T(Q2H+1+n)

n=0

and
. T(2H +1
1F1(1;2H+ I;HjA) = E ( ( + )

R T (kiA 8.15
:0F2H+1+n)(m )" (8.15)

where (2H +1), = (2H +1) (2H +2) - (2H + n) = T3040,
Therefore, using (8.14) and (8.15), we have

1F1(1' 2H +1; —/ﬁIjA)—F 1F1(1; 2H +1; HJA)

TQH+1) oo
- A
Z oH + 17 20) 98

_ H+1/20(H +1) K2 (A"
2ZFH+n+1/2)F(H+n+1)< 4 )

1
:21F2(1;H+1/2,H+1;Z/12 (jA)?), (8.16)
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22z 1

where the second equation is obtained by using I' (2z) = NG [ (z)T (z+ 3) (see, Grad-
shteyn and Ryzhik, 2007, Eq. (8.335.1)) and the third equation comes from the definition

of the generalized hypergeometric function 1 F» as

1
1Fo(L, H+1/2,H + 1;114;2 (GA)?)

R (1), 1 (2682
_;)(HH/Q)H(HH)nm( 4 )

:Z_:[(H+1/2) (H+1/2+n—1)][( +1)-- - (H+1+n—1)

_Z T(H +1/2)0(H + 1) (#(JA)?)".

N'H+4+n+1/2)T(H+n+1)

Finally, using (8.13) and (8.16), we get that the covariance function given in (2.14).
This completes the proof of Lemma 2.1.

Proof of Theorem 4.1: The fOU process {X;a} is a short-memory stationary
process when 0 < H < 0.5. The asymptotic properties of the ML estimate for short
stationary processes have been well established in the literature; see, e.g., Hannan (1973).
Hence, we focus on the proof for the long-memory case where 0.5 < H < 1.

Define F, (f) = —1//(f), minus one multiplying the second-order derivative of the
log-likelihood function [,,(#) defined in (4.1) with respect to the parameter vector § =
(1, 0%, 5, H)T. Let A, (0) = diag(n'=H,\/n,/n,/n). Sweeting (1980) proves that the

ML estimate 6, w1 has asymptotic normality as
A (8) (aML - 9) LA (0,271 (0)), (8.17)

if the following two conditions are satisfied:
(C1) When n — oo, it has

-1 —1 T P
T, (6) = {4 (0)} ' F (0) [{40 (0} Y] 2 T(0), (8.18)

where 7 (0) is a positive definite matrix with probability one.
(C2) For all ¢ > 0, it has

supH{A )} A, (6%) —I4H—>0 (8.19)

where I is the 4 x 4 identity matrix, the sup is over the set H{An O} (0% — 6’)H <c

with ||-|| denoting the Euclidean norm of a matrix, and

sup 14, 017 17, 0) - £, 00 [, 017 [ 0. (8:20)
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where F,, (©) is defined as F,, with row ¢ evaluated at 67, for i = 1,2, 3,4, and the sup
is over the set H{A" " 0 — 9)” <ec.

To prove the two conditions above being satisfied for the fOU process with 0.5 <
H < 1, we first list some asymptotic properties of the Toeplitz matrice 02, which
will be frequently applied later. For each § > 0 with a constant K independent of

B = (02 k,H)" and n, as n — oo, it has

_ _ B(3/2—-H,3/2—H) K2
2H—-2 T 1 ’
1’y 11 21
" ( ) T T@-_2H)  C(H)AM2 (8:21)
1T2—18—22—18—22—11§K -2 2HAS (8.22)
Ok K
oY __, 0%
sz—li -1Y~ —11<K L 2—2H+S 9
oH~ om~ " ’ (8.23)
1750 8 gy o (8.24)
OkOK - ’ ’

where the first limit can be obtained from Theorem 5.2 in Adenstedt (1974), and the
other three inequalities come from Lemma 5.4 (d) in Dahlhaus (1989).

We start from proving the condition (C1). Consider the elements in the first row of

. a2 02 2 92 .
Z,(0), ie., — (da,lﬁ?(i)’ da;géi), 662%(3), dall;a(z))' When n — oo, using (8.21), we have

0?1,(0) 1 B(3/2—H,3/2—H) K2
2H-29"n 2H—2 Ty—1 )
— —_— = —1 X1 2
P @ Tp-m) oo amz &%)
and 921,(6) |
H-3/29"n\V)  H_3/2 Ty—1 P,
where the last limit comes from the fact that
0%1,(0)
E [ pH-3/29"n _
(n do2dp 0
0%1,(0) 1 1
H-3/29 tn _ . 2H-3 Ty—1q _ 2H-3 2-2H
as n — oo.
Moreover, as n — 0o, using (8.22), we also have
0%1,(0) 1 +oxt
_p =329 M\Y) _ H-3/2 1 4T X — 4l
" OkOu " o Ok ( H1)
1 by
_ 32 L T2 (X —p1) o, (8.27)

o? Ok
because
E ( nH-3/2 91,(0) — 0. Var [ nH-3/2 9*1,(0) _ n2H—3i1TE—1a£ _10% -11 4 0

Ok ’ Ok ot Ok Ok ’
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Similarly, as n — oo, it can be proved that

821,,(0)
o H=3/29tn P
" omop O (8:28)

From A.2, we can see that f)% (X\; B) satisfies the Assumption 2.1 of Cohen et al.
(2013). Hence, for the other elements in the matrix Z, (), by using Lemma 2.6 in
Cohen et al. (2013), as n — oo, it is easy to get

1 920,(0)  9%0,(0) 0%0,(0) 1
vn 0 0 9g%002  9g20k  0g20H NG 0 0
_ 0o L o 0%, (0)  9%0,(0) 0%4n(0) 0o L o
VO .95 &% 2 v
0 0 & 9020  OnOH  OHOH 0 0 &=
1 & T
S / (VinfR(N:8)) (VInfL(A;8)) dA. (8:29)

Therefore, using (8.25)—(8.29), we can obtain that the condition (C1) is satisfied as

B(3/2—H,3/2—H) K2 0
(0) = (

7, (6) LNy T'(2—2H) 02C(H)A2H-2

To prove the first part of the condition (C2), note that the set over which the sup is

sought is

[tan @17 0" - 0)|

= \/n22H (1 — p)? 4 n (o> —o2)? +n(k* — k) +n(H —H)? <c. (8.30)

Using (8.30), we have n (H* — H)> = 0, as n — oc. Therefore, it has

log (nH_H*) = (H — H*)log(n) - 0 and nf~ 7" 1.

As a result, for any 0* in the set of H{An )} (0% — 9)” < ¢, using (8.30), as n — o0,

we obtain

finnont a1 <)

diag (nH—H* _ 1,0,0,0)” 0.

Therefore, (8.19) follows and the first part of the condition (C2) is proved.
We now turn to prove the second part of the condition (C2), i.e., (8.20). Let us first

0 =7 VIR 8)] [VIn 2 (% 8)] T da

) |

-
consider the elements in the first row of the matrix {4, (8)} " [Fp (©) — Fy ()] [{An (9)}71} ,

i.e.,

Oudu 0c20u

2H-28%1,(0)  H-3/20%.(0)  H-3/20%1.(9)  H—3/20%1.(6)
(” n n owop oHou
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_(2H—29%W(07)  H-3/20°Wn(07) | H-3/20%W(0])  H—3/20°n(0])
(" ouop G r okop dHou ) (8.31)

where 67 satisfies H{An @)} (07 — G)H <e

When n — oo, it has

o [0%1,(0)  0%1,(07) B 1 _ 1 _
2H -2 n(0)  O7n(0y 2H—2 Ty—1q_ Tw—1
" [ oudu Oudp ] " 021 1 021 1

—0, (832
0=0%

where the last limit comes from the facts of the continuity of #ITE_IHG%* when 67}
-1
goes to the true value of the parameter and n2H—2$1TE_11 =0 (1) as n — 0.
With (8.26) and the fact of X — i1l = (X — pl) 4+ (p—p3) 1, as n — oo, we can have

2 *
_ nH—3/28 ln(el)

0o20u
1
=02 [ CaTs | (X g
g 0=0%
_ 1 orem L Ts- *
—n -3/ ([41T2 ! ] (X—pl)+ | 517571 ] (u—m))
O' O-
0=0; 0=07
_ 1 - - 1 - «
—pH-3/2 [(flﬂz 1 ] (X — pl) + nt =3/ [‘741TE 1 ] (n—p1)
0=0% 0=01
2. (8.33)

where the first limit can be obtained from the results of

] (X—#l)) — n2H—3 [(5417'2—1

g

Var (nH_3/2 [141TE_1

0=07 0=01

and the second limit follows from

1
nH—3/2 [41TE—11
g

* — 1 —
] (u—py) =n*H=2 [041TZ "1

] {nl—H (M—MT)} n-l2 — (n—1/2> .

0=0% =07

Therefore, using (8.26) and (8.33), as n — oo, we get

Lap (O21,(0)  21,(00)
H n n p
nH=3/2 (802% - 8028; ) 2. (8.34)

Similarly, as n — oo, it can be proved that

02,(0) 021, (67) 02,(0) 021, (6%)
H-3/2 n(0)  07n(07)) » H-3/2 n(0) 07n(07) ) »
" ( drdp | Ordp > = 0,n <8H8u OH > =0 (8.35)
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Using (8.32), (8.34), and (8.35), we can see that the elements in the first row of the
matrix, {4, (0)} " [Fn (©) — Fy ()] [{An (0)}_1}T, converge to zero in probability as
n — 0o. By applying the same procedure above, the elements in the first column of the
matrix {A, (6)} " [Fn (©) — Fy (8)] [{An (9)}_1} T, can be proved to converge to zero in
probability as n — oo.

Now, consider the other elements of {4, (0)} " [F (©) — Fy (9)] [{An (9)}71} T, ie.,

0% (03)  n(03)  0%Ln(03) 020,(0)  924n(0)  924n(6)
1 d029o? 0020k 0020H ag260'2 9020k 6§728H
< 024,(03) a%n&;) 020, (03) (0) 920,(0)  9%4,(0) (8.36)
902 IR0 OHO a2 KOk OHOR ’ :
n ) ol o ) sy 9eatd)
\ 9020H OROH OO0 0020H OxkOH OHOH
where ‘ {A, (0" (0 — O)H < ¢, for i = 2,3,4. Denote

X=X - ul, 0F = (uf, B) with B := (¢, s}, H}Y,
where p is the true value of the location parameter, making X to have a zero mean.
Using the relationship between X and X, we can obtain
x4\ 1 v— * x4\ 1 *
(X —p1) BN (X = 1) = (X = pl + pl — 1) 271X = pl 4+ pl — 1)
=X TX 42 (p— ) VTS X 4 (p—pf)? 17571,

and
1 _
0)]p— o = {—2ln‘022|—(X pl)’ s 1(X—,ul)} o
1
= {—m\a?m — —XTZ 1XH
2 B=5;
2(p—p)1TE'X —uH)*1Tys ™
{202 [ (k= n7) + (1= ) } s
= ln(ﬁ)|ﬁ:[3; + Gn(5)|5:5; ) (8.37)
with ) )
— - 2 X Ty-1y
In(B)|goge = { zln\a 5| 53X T X}‘ﬁ:m :
1 ~
Gn(ﬁ”g:ﬂ* == {2 [2 (1 — i) ' X+ (1 — M;ﬁ)z 1TZ_11} H :
: 20 B=p;

From (8.37), we can see that the difference of the second-order derivatives of the
log-likelihood function ¢, (-) at different points can be rewritten as
020y, (07) B 0%y, (0) 020, (B]) B %0y, (B) n 0?Gr, (BY) B 092G, (B)
0-0- 2-0-  0-0 0-0- 0-0- 9-0-

(8.38)
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Therefore, using (8.36) and (8.38), can we simplize the matrix expression as

‘9252( 2) 0%t (03) 32% 63) 920, .0) 920,(0) 924, (0)
ag (o 2 0.2 K 2
1 862£n89* 0? énfe 5) 57, ?9 | 2% #2585
720K KOk I
" 82e & aﬁaﬁ*) aaeHg H) t?)%tfn?@) 8‘2&?(9) 662218(9)
8028H OrOH BH(?H 0020H  OkOH OHOH
_L(P0(5)  2(B) | PCu(B)  5GCu ()
n d-0- d-0- 8 0- -0 J3.5
2 * 2 * 2
n d-0- D-0- )gys 1 8-8‘ 00 )ays

Using Lemma 2.7 in Cohen et al. (2013) and the mean value theorem, it is can be
easily proved that

mmHKW%wn_W%w»
3x3

P
) 5.9, —0 asn— oo, (8.40)

where the sup is sought over the set of 3 satisfying

\/n(a2*—02)2+n(n*—/€)2+n(H*—H)2Sc. (8.41)

. . L [0%Ga(Br)  92Ga(B)
1 K2 n
Hence, in the following, we only need to prove that every element in n ( 59— — 5.5 s
X

converges to zero in probability as n — oo, which in turn leads to

L[ (9°Gn (Bf)  0°Gn(B) P
— LL— . 42
suan< 9-0- 9-0- >3><3 —Y (843
2 *
Next, we just present the proof of n~! 0 22(9(53) — azigf )> %0 in details. The

other elements going to zero can be proved in a similar way and hence omitted due to

the space limit.

Note that
okdk 202 2(p—pi)1 OkOK Xt (= p)" 1 O0kOK Drom T } (8.43)
where 0%y oY __, 0% 0%y
S it 3t i 3 »t.
OKkOK Ok Ok OkOK

From Lemma 5.4 (d) in Dahlhaus (1989), it has

2
1TE_1 882 2—11 S K-n2_2H+6,
ROR

41



1—|—E—1a£2—18£2—11 < K- n2—2H+5’
ok oK
and hence
Tazz_11 O (n*2H 8.44
1 = - . .
OkOK (n ) ( )
Using the condition of n'=# (i — uf) — 0, (8.43) and (8.44), we have
*Gn (B) _  (p—pf) 70°57" ¢
= — 21 X 1). 8.45
OKkOK o2 OKkOK +o(l) ( )

Consequently, we can write

1 (0°Gy(B;)  9°Gn(B)
n( Okdk  OkOk )

[ty 1o
n o2 OkOK o2 OkOK e

From Hoélder inequality, it is easy to get

102271 102271 %
02 OKkOK 0% OKOK ) |5_gs
3

X+o(1). (8.46)

n 11T

) 1 o2y 1 o2y 1 o2y 1 o2y '
=\ S “\ =70 v vl Bl s v 1
0? 0KkOK 0? 0KOK B=B; 0? 0KkOK 0? 0KkOK B=Bs
x Vn-1XTX 50, (8.47)

where the last limit comes from the facts of n~!XTX = O, (1) due to the ergodicity of
the fOU process, and the continuity of (#%}?{;) ’ﬁ:ﬁ* when 83 — (3, which makes

every term of the matrix (71288258;1> - (U—ga;,?a;l> ‘B 5 shrinks to zero as n — oo.
=P3
Therefore, substituting (8.47) into (8.46), n — oo, we have

1<82Gn(ﬁ§) 5°G (8)
n Ordk  OrOk

) — () op (1) +0(1) B0,

and finally, the part 2 of (C2) as

Tl e

sup = 0,

‘{An ) 170 (0) = F (0)] [ {4, )} ]

with the sup being sought over the set ‘{An O} (6F — 0)‘ < ¢ is proved.
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Online Supplement to “Maximum Likelihood Estimation
of Fractional Ornstein-Uhlenbeck Process with Discretely
Sampled Data” by Wang, Xiao, Yu and Zhang (not for pub-
lication)

This online appendix contains some additional proof details omitted in the main paper
due to space limit, a set of Monte Carlo results, and a set of empirical results. The
Monte Carlo simulations aim to determine how a change in one parameter affects the
estimates of the other parameters in fOU. The target of the empirical results is to show
that all the empirical conclusions drawn in the main paper are qualitatively unchanged
when In (RV) is predicted.

A.1: Connecting Hult’s formula (2.16) with our formula (2.14)

Using two well known equalities csc(d) = sec (5 —¥) and sin(9) = 1/ csc(d), we can
write the first term of (2.16) as

1 m(1 — 2H)

o?T(2H + 1)
o2 sec( — T

o’I'(2H + 1) sin(7 H) 5 2H
K

) cosh(kjA) = cosh(kjA),

which reduces to the first term of (2.14).

For the second term of (2.16), using the Legendre duplication formula, I'(9)T (9 + 3) =
21=29, /7T(299), and the Euler’s feflection formula (See Eq FI IT 430 of 8.334 on page 876
from Gradshteyn and Ryzhik (2007)), I'(1 — 9)['(9) = m, we can write the second
term of (2.16) as

(JA)*MT(—H)

o’T'(2H + 1) sin(7H)

. 2
)1F2 (1;H+ %,H—l— 1; (1j4) )

VA2HHIT(H +1/2 4
a2r(2\f§%21})liiln(7rﬂ) Uﬁﬁ?i;;;r)(réf?) <1; o %H Y (ﬁjf)2>
2F(2\13;221});1;1(WH) (jﬁlf;F\(/;lff()zgff)lFQ (1.H+ %,HJF 1. (ffjf)Q)
o’T(2H ;;) sin(mH) (jA)QHFF((QEJI;r;z(H)QﬂlFZ <1; o % Hot ol (ij)2>
_o’T(2H +271r) sin(mH) (J'A)Q;Ig(};if)lf)(H)Hle <1;H+ %7H+ 1 (/f»jf)2>
_ sin(wH)(jm;:P(l - (1 = + ol (njfﬂ)
AN (552

2
(15t 4 g1 R

2
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which reduces to the second term of (2.14).

A.2: f2(\;B) satisfies the Assumption 2.1 of Cohen et al. (2013)

As stated in Cohen et al. (2013), the Assumption 2.1 of Cohen et al. (2013) corresponds
to Assumptions 1, 2 and 4 in Lieberman et al. (2012), except that some smoothness
property on the derivative of order three of f)% (A; B) is imposed. Consequently, for the
sake of convenience, we will prove that the Assumptions 1, 2 and 4 defined in Lieberman
et al. (2012) are all satisfied for our stationary fOU process. We focus on the proof of
the case where H € (1/2,1). The same procedure can be extended straightforwardly to
the case of H € (0,1/2), which we will briefly discuss at the end of this proof, but omit
tedious details for simplicity. In the following, we repeat the Assumptions 1, 2 and 4
defined in Lieberman et al. (2012) in italics whenever necessary to make our proof easy
to read and self-contained.

Assumption 1: There exists o (8) € (—o00,1) such that f (\;8) ~ IA|7e® g3 (N)
as A — 0, where gg (\) is a positive function that varies slowly at A = 0. The func-
tions f)% (X B), f)% ()\;ﬁ)_l and ﬁf)% (X\; B) JOX are continuous at all (X, 5), X # 0.
For each § > 0, it has f& (\5) = O (|Ara<5)*5), g t=0 (|A\a(5>*5), and

0% (X B) Jox =0 (]A*710),
To prove Assumption 1, we first get that when H € (1/2,1), the spectral density

function of discretely sampled fOU in (2.6) can be rewritten as

12 06 8) = A2 T (1) a2

2H—1
o (HA)2 a2 + ‘)‘| ¢] ()‘a”a )

i#0
=\ s (V)

where gg (\) = ZC (H) A2 {m +FIAPEES o d5 (A, H)}.

Under the condition of H € (1/2,1), it has o (8) := 2H — 1 € (0,1), and hence,
A1 5 0 and
2
1
95(\) = —C(H)A* —— as A —0. (8.48)
o (kA

1-2H
On the one hand, we can directly obtain that ¢g(\, H, k) = (A‘),‘J)QW is twice contin-

uously differentiable and positive at all (A, H), A # 0. Moreover, a standard calculation
shows that

2

AR
((AR)2+AP)

1-2H
2|)\|—2H_

0
aﬁbo()\’H, K) :m
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0 =2 A 27 In(|\|)

2 o\ H, k) =
8H¢0( ) 7’{’) (AH)2—|—|)\|2 )
ﬁqbo(A H, k) =~ 2N Ak
Ok T ((AK)2+ A%
92 AN 12 (1A
— H. k) =
gz 0N R == e
2 A4 2—2A2 2
S su( Hyw) =By,
2
((ar)+ A2)
2 AA2 k| \[1=2H In(|\))
—Z o\ H, k) = :
OkOH

(A + a)”

We can see that all the functions above are continuous at all (A, H, k), A # 0 and the

discontinuity in A # 0 is removable. Then for each § > 0, as A — 0, we have

¢0()‘7H7 H) _ |)“6 =0
IA-CH-D=3  (Ak)2 + |)2 ’
¢ ' (N H, k)
‘O)\‘Q}Iﬁ =[A° ((AK)?+ [AP) =0,
L do(\, H, k) 1-2H 2

— 1)
- 2‘)‘| -

)\24-5 0.
NG (AR N S

((Ar)2 +[A]2)

Consequently, we have

do(A, H, 1) =0 (|A[72H=070) (8.49)
é5(\ H,r) =0 (]A2H7170)) (8.50)
D00 H,r) =0 (270) (8.51)
and

b0\ H, ) =0 (]A|7HD2), (5.52)
aiqbo(A,H, k) =0 <|/\\_(2H_1)_5> : (8.53)

62
00\, H, k) =0 (1a-@r=n=9), (8.54)

82
590\ Hor) =0 (]A-CH-D7), (8.55)

82

s o0(\, H, k) =0 (]A~@1=0-2) (8.56)



On the other hand, for k& # 0, we can see that ¢ (A, H, k) is nonnegative, twice

continuously differentiable with

0 (1= 2H)|X + 2kn| 27 2]\ + 2kn* 27

7¢k(>‘7 H, ’{) =

(2

0 —92I\ + 2k7|F2H In(|\ + 2k7
7¢k()‘7H7 ’%) = | 2| (| 2 ‘)7
oH (AK)? + |\ + 2kT]|

2|\ + 2k |12 A%
((AK)? + |\ + 2k7|2)?

0? AN 4 2km |72 02 (|\ + 2kn))
—— (N H, k) =

gz N HoF) B2+t 2k
82
mqbk(AwH?’i)

_ 6A*K? — 2A2|\ + 2km|?
C((AR)? A+ 2kn)?)

0? 4AZK|N + 2k | 2] In(|\ + 2kn))

a/«uaH(b’“(}"H’ ") = ((AK)2 + |\ + 2k7|2)? '

0
&¢k(A7 H7 ’%) -

(AR)2+ AN+ 2k712 ((AK)2 4 A+ 2kx)2)?

A+ 2k |12

Using the results above and the definition of ¢y (A, H, k), for § > 0 and as A — 0, we

can see that

oe(\, H, k) =0 (|/\|_(2H_1)‘5> ,
;)\qbk(A,H, k) =0 (|A|*2H*5) ,
£{¢k(A,H, k) =0 (|>\|‘(2H‘1)‘5> ,
e\ H, k) =0 (A7CHD0)

;I;qﬁk(/\,H, k) =0 (]A-@=D0),
38:2 e(\ H, k) =O (|>\|—(2H—1)—6> 7
0000 ) =0 (| 2H0-9)

Notice that %(Z)k()\,H, k) <0 with H € (%, 1). Then, we have

o\ H, k) <¢p(—m, H, k)
2k — V)m|' 27
(AK)? + |\ + 2kr|?
<|(2k — 1)m| 71721

§27T|]€’7172H

50

(8.57)
(8.58)
(8.59)
(8.60)
(8.61)
(8.62)

(8.63)



§27_{_|]€|7172Hm7

where H,, = infgceg H > 0.

Consequently, we have Zk;éo 2m|k|~1=2m < oo and by Weierstrass’s M-test, the
series ) £0 ¢r(A\, H, k) converges uniformly. As aresult, ) . £0 o (A, H, k) is continuous,
and hence also bounded, at all (\, H, k). Similar arguments show that the derivatives of
>k £0 or(A, H, k) are given as the infinite sum over k # 0 of the corresponding derivatives
of the summands ¢(\, H, k), and that they are also continuous and bounded at all
(N, H, k).

From (8.49)(8.63), we have that ), ., ¢x (), H, k) and derivatives of ), ., ¢1.(A, H, k)

satisfy the following conditions

3" éu(\ H. k) =0 (W <2H—1>—5) , (8.64)
kEZ
)
>~ S0 How) =0 (|77, (8.65)
keZ
> on(\ Hor) =0 (]A|7@H7D70), (8.66)
= D00 (b
> 5-du(\H.k) =0 <\)\]‘(2H‘1)‘5), (8.67)
kEZ
3 0 H, k) =0 (|5 (8.68)
a2
(-9
500 Hor) =0 (N -H-0-5) (5.69)
2 s 44 5 .
keZ Ok
o dn(\, H, k) =0 (\Ay*@H*U*‘S) (8.70)
2 9HD
Now, using (8.64) and (8.65), we can see that
18 (38) =0 (A7) (8.71)
) Con
SR (:8) =0 (]A217). (8.72)

It is easy to check, as A — 0,

qbo()\,H, IQ) _ 1 5 1
IANI=2H 0 (AR)22+ N2 (AR)?
¢k’(>\aH7 "{) o 1 |)\|2H_1

— 0.

INT2H ~ (Aw)2+ |+ 2k7[2 |\ + 2kn[2A-1

o1



I'(2H + 1) sin(nH)
27

Let Cy = C(H)/(2r) =

have

. Then, using these results above, we

e B PCuA (G0N H k) + X4 06N\ H R)) 020 A

IN1-2H ~ I\[1—2H - (Ar)? < 00

Thus, we have
fR 8" AP
APF=I=0 7 78 (X ) JIA2H

Combining (8.48), (8.71)-(8.73) with the continuity of f{ (\;3), we obtain that
f2 (\; B) satisfies Assumption 1 of Lieberman et al. (2012).

Assumption 2: Of% (\; )/8@ and 0% f£ (X; )/8@85;4 are continuous at all (A, ),
A#0, angfX( i8) = O (Jw|~ o ) with 1 < 7 < p, fo( ;) = O (Jw|™ (8= 5)
with 1 < j,k < p and ngaﬂlf)% (X B8) = O (IA[~B=9) with 1 < 4, k,1 < p.

To prove Assumption 2, by (8.66)-(8.70), we can easily deduce that

(8.73)

) a(CyAH )
7Hf)% (A B) = (gH)ZGZ)kﬂLCHA2HZaH¢k]
keZ keZ
=0 (Jn-@=D), (8.74)
9 8 (np) = otcna S 2 0 (1a-@=n=) (8.75)
8/43 X ) H o 8/1 k ) .
2 . 82(Cy A2H) A(CHAH) — 8 i 02
@fx (A 8) = o T oH: Z¢k+2 ol k%aHﬁkarCHA ;Zamﬁbk
=0 (|A|—<2H-1>-5) , (8.76)
02 [a(Cy a2t 82
8Kgfx( ;8) = o (gH)Zéf)k*—CHAMZW%]
kEZ keZ
~0 (|)\| (2H-1) 5) : (8.77)
0? Ay, 2 Cr9(CHA2H) 9 2H
grom /X W) =" =g ZE:Z R Pr T Ol é oHoR "
~0 (|>\| (2H-1) 5) . (8.78)

Since f£ (\;3) is linear with respect to o2, we have

DLIR (B) = Ot S Gy H. ), (5.79)
keZ
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Fo29524% NP =0, (8.80)
i d(Cp A
99200 T (A B) = (g’HZm M H, "f)+CHA2HZ SO H k), (8.81)
g kEZ kEZ
0° A o~ 0
g X (NB) = CuN*y | = p(N H, r). (8.82)
keZ

Using (8.74)-(8.82), we obtain that Assumption 2 of Lieberman et al. (2012)
follows.

Assumption 4: The function o(B) is continuous, and the constants appearing in the
O(+) above can be chosen independently of 5 (not of 0).

Using the result of a(3) = 2H — 1, we can easily obtain the results of Assumption

Hence Assumption 1, Assumption 2 and Assumption 4 in Lieberman et al.
(2012) are fulfilled for the spectral density of fOU process, f¢ ();8), for H € (1/2,1).
For H € (0,1/2), using similar arguments as the case of H € (1/2,1) with a(5) = 0, we
can also show that Assumption 1, Assumption 2 and Assumption 4 in Lieberman
et al. (2012) are fulfilled. Moreover, it is easy to obtain the smoothness property on the
derivative of three order of f¢ (\;3) for all H € (0,1). Consequently, Assumption 2.1
in Cohen et al. (2013) are fulfilled for all H € (0,1).

A.3: Simulations for fixed H and various values of o, yu, and x

In this experiment, we fix H to 0.260573 and allow the other parameters (o, i, and &) to
take different values to determine how a change in one parameter affects the estimates
of the other parameters. Table 13 reports the simulation results when x = 4.446145,
= —2.465673, and o varies from 0.75 to 1.5. Table 14 reports the simulation results
when k = 4.446145, 0 = 1.172021, and p varies from —2.5 to 0.5. Table 15 reports
the simulation results when p = —2.465673, ¢ = 1.172021, and « varies from 1 to 10.
According to Tables 13-15, ML always performs better than the other three methods in
estimating H, o, x in terms of the standard deviation. The alternative estimators of u

have a similar finite-sample performance.

Forecasting results for In(RV)

The main paper forecasts RV's for the Standard and Poor’s (S&P) 500 index ETF and the

nine industry ETFs. In this subsection, we compare the performance of the competing
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Table 13: Finite-sample properties of alternative estimation methods for (H, o, u, k)
when H = 0.260573, T'= 10, A = 1/250 with various values of o.

K H I o K H I o

Method True value 4.446145 0.260573 -2.465673 0.750000 :::: 4.446145 0.260573 -2.465673 1.000000
MM Mean  6.482180 0.280680 -2.464634 0.745912 ::: 6.533847 0.281600 -2.468015 1.000003

SD 2.346232 0.026090 0.028622 0.103559 ::: 2.202818 0.025526 0.039426 0.136363

MCL Mean  4.736685 0.260140 -2.464634 0.660453 ::: 4.706750 0.259778 -2.468015 0.879312
SD 1.447678 0.013427 0.028622 0.045268 ::: 1.421765 0.013283 0.039426 0.061482

AWML Mean  4.783731 0.261750 -2.464634 0.662134 ::: 4.743560 0.260423 -2.468015 0.881415
SD 1.124392 0.012255 0.028622 0.041165 :::: 1.298635 0.012456 0.039426 0.057362

ML Mean  4.777911 0.261367 -2.464362 0.663226 ::: 4.792363 0.260869 -2.467470 0.882593

SD 0.986943 0.011514 0.027339 0.037803 ::: 1.028730 0.012159 0.038241 0.054805

Method True value 4.446145 0.260573 -2.465673 1.250000 :::: 4.446145 0.260573 -2.465673 1.500000
MM Mean  6.348864 0.280466 -2.468772 1.242599 ::: 6.475826 0.281198 -2.470099 1.497698

SD 2.273947 0.026257 0.048727 0.176225 ::: 2.304653 0.026077 0.057656 0.209800

MCL Mean  4.590842 0.259216 -2.468772 1.095389 ::: 4.697268 0.259947 -2.470099 1.320399
SD 1.474072 0.013528 0.048727 0.076820 ::: 1.487458 0.013205 0.057656 0.090503

AWML Mean  4.680732 0.258145 -2.468772 1.099112 ::: 4.559140 0.260980 -2.470099 1.338108
SD 1.322748 0.013379 0.048727 0.071574 :::: 1.269776 0.011651 0.057656 0.084067

ML Mean  4.616638 0.260284 -2.468778 1.099433 ::: 4.718207 0.261001 -2.469418 1.325072

SD 1.061964 0.012504 0.046272 0.069913 ::: 1.087483 0.011867 0.053866 0.080545

Table 14: Finite-sample properties of alternative estimation methods for (H, o, u, x)
when H = 0.260573, T'= 10, A = 1/250 with various values of p.

K H o o K H " o

Method True value 4.446145 0.260573 -2.500000 1.172012 ::: 4.446145 0.260573 -1.500000 1.172012
MM Mean  6.387549 0.280293 -2.502425 1.164356 ::: 6.557786 0.280944 -1.507268 1.168321

SD 2.128346 0.025208 0.045411 0.155490 :::: 2.346244 0.026223 0.042684 0.165097

MCL Mean  4.633282 0.259075 -2.502425 1.027643 ::: 4.760308 0.259858 -1.507268 1.031093
SD 1.408072 0.013218 0.045411 0.070849 ::: 1.440295 0.013230 0.042684 0.070822

AWML Mean  7.720884 0.192844 -2.502425 1.018842 ::: 4.733229 0.259874 -1.507268 1.032021
SD 1.303314 0.012313 0.045411 0.067321 ::: 1.190782 0.012424 0.042684 0.064719

ML Mean  4.704257 0.260290 -2.502018 1.031934 ::: 4.767662 0.260916 -1.507925 1.034495

SD 1.122367 0.011553 0.042531 0.061377 ::: 1.043506 0.011693 0.040872 0.061317

Method True value 4.446145 0.260573 -0.500000 1.172012 ::: 4.446145 0.260573 0.500000 1.172012
MM Mean  6.449656 0.281795 -0.495466 1.500560 ::: 6.380326 0.280981 0.496312 1.167651

SD 2.215225 0.025240 0.058120 0.198412 ::: 2.219293 0.025869 0.048198 0.161037

MCL Mean  4.604618 0.259538 -0.495466 1.316249 ::: 4.599735 0.259537 0.496312 1.028776
SD 1.422735 0.012374 0.058120 0.083962 ::: 1.414295 0.013592 0.048198 0.072817

AWML Mean  4.614885 0.260175 -0.495466 1.246918 ::: 4.628527 0.259832 0.496312 1.032918
SD 1.195485 0.011151 0.058120 0.065218 :::: 1.223542 0.011465 0.048198 0.068321

ML Mean  4.632349 0.260666 -0.495156 1.321244 ::: 4.645695 0.261065 0.496755 1.034763

SD 1.068652 0.010982 0.056782 0.073103 ::: 1.111736 0.011760 0.046513 0.061723
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Table 15: Finite-sample properties of alternative estimation methods for (H, o, p, x)
when H = 0.260573, T'= 10, A = 1/250 with various values of .

K H o o o K H o o

Method True value 1.000000 0.260573 -2.465673 1.172012 ::: 4.000000 0.260573 -2.465673 1.172012
MM Mean 1.771108 0.275012 -2.471662 1.129448 ::: 5.655800 0.278912 -2.471042 1.154490

SD 1.049706 0.028485 0.199653 0.175615 :::: 2.265258 0.026882 0.055927 0.170342

MCL Mean 1.241364 0.259833 -2.471662 1.027760 :::: 4.103789 0.259484 -2.471042 1.026788
SD 0.633910 0.012649 0.199653 0.066936 :::: 1.359120 0.011771 0.055927 0.065335

AWML Mean 1.335375 0.260573 -2.471662 1.038502 :::: 4.300459 0.262798 -2.471042 1.034784
SD 1.220856 0.012757 0.199653 0.060939 ::: 1.130115 0.011541 0.055927 0.059933

ML Mean 1.494851 0.263265 -2.469936 1.044580 :::: 4.418231 0.262342 -2.470825 1.040536

SD 0.687877 0.011052 0.183393 0.058929 ::: 1.035405 0.010274 0.055291 0.057587

Method True value 7.000000 0.260573 -2.465673 1.172012 ::: 10.000000 0.260573 -2.465673 1.172012
Mean 9.432022 0.280405 -2.469224 1.161178 ::: 12.333309 0.276733 -2.467195 1.138530

MM SD 2.781223 0.021658 0.030181 0.144839 ::: 3.087544 0.022344 0.019818 0.149289

MCL Mean  7.290524 0.260941 -2.469224 1.036934 ::: 10.564819 0.260861 -2.467195 1.037270
SD 1.895625 0.013418 0.030181 0.073588 ::: 2.257180 0.014246 0.019818 0.078490

AWML Mean  6.822431 0.260994 -2.469224 1.043618 ::: 10.480387 0.273741 -2.467195 1.037254
SD 1.348381 0.010399 0.030181 0.067411 ::: 1.466019 0.011672 0.019818 0.067287

ML Mean  7.195729 0.261431 -2.468857 1.037218 ::: 10.080197 0.259238 -2.467167 1.025906

SD 1.247612 0.010680 0.028115 0.058322 ::: 1.300650 0.011368 0.018669 0.061477

models in forecasting In (RV'). We split the sample period into two periods. The first
period is between January 4, 2016 and December 31, 2020 and the second period is
between January 4, 2021 and December 30, 2022. Similar to the main paper, on each
day in the second period, h-day-ahead (with h = 1,5) forecasts of daily In(RV') are
obtained from the following methods, namely MM with WXY, MCL with WXY, ML
with WXY, MM with optimal, MCL with optimal, and ML with optimal. The rolling
window estimation framework is also adopted. Table 16 reports the root mean squared
error (RMSE) of each candidate model for h-day-ahead-forecast of In(RV')s with the best
result highlighted in boldface for each h. Interestingly, ML with the optimal formula
always performs the best, followed by MCL with the optimal formula. This result is
consistent with the forecasting results of RVs.

To investigate if forecasts from the ML estimate with the optimal forecasting formula
are statistically significantly more accurate than those of other estimation methods and
forecasting formulas, Table 17 reports the Diebold-Mariano (DM) statistic based on
the squared forecast errors and the p-value (in parenthesis) with the benchmark being
ML with the optimal forecast (boldface means statistically significant at the 10% level).
According DM, the forecast from the ML estimate with the optimal forecasting formula
is always statistically different from the MM estimate with WXY’s formula, the MCL
estimate with WXY’s formula of Wang et al. (2023), the ML estimate with WXY’s

95



Table 16: RMSE for h-day-ahead-forecast of In (RV') of fOU using three different estimation
methods and two different forecasting methods.

Time series SPY XLB XLE XLF XLI XLK XLP XLU XLV XLY

Panel A: h =1
MM+WXY  0.3072 0.2919 0.2822 0.2962 0.2783 0.2694 0.2686 0.2601 0.2610 0.2607
MCL+WXY 0.2995 0.2851 0.2601 0.2819 0.2724 0.2617 0.2544 0.2568 0.2592 0.2505
ML4+WXY  0.2846 0.2768 0.2387 0.2618 0.2499 0.2439 0.2487 0.2462 0.2534 0.2410
MM+optimal 0.2937 0.2612 0.2596 0.2775 0.2654 0.2594 0.2598 0.2657 0.2641 0.2679
MCL+optimal 0.2774 0.2259 0.2296 0.2574 0.2373 0.2315 0.2298 0.2304 0.2391 0.2330
ML+optimal 0.2703 0.2240 0.2211 0.2502 0.2361 0.2303 0.2207 0.2280 0.2244 0.2272
Panel B: h =5
MM+WXY  0.3446 0.3460 0.3347 0.3450 0.3368 0.3337 0.3289 0.3275 0.3309 0.3325
MCL+WXY 0.3390 0.3451 0.3264 0.3373 0.3280 0.3211 0.3251 0.3243 0.3284 0.3240
ML+WXY  0.3276 0.3340 0.3244 0.3350 0.3186 0.3166 0.3163 0.3107 0.3164 0.3123
MM+optimal 0.3346 0.3406 0.3258 0.3352 0.3231 0.3180 0.3229 0.3138 0.3206 0.3184
MCL+optimal 0.3163 0.3255 0.3149 0.3251 0.3076 0.3162 0.3152 0.3078 0.3082 0.3076
ML+optimal 0.3119 0.3224 0.3139 0.3197 0.3054 0.3012 0.3084 0.3005 0.3046 0.3050

formula of Wang et al. (2023), and the MM estimates with the optimal forecasting
formula regardless the forecasting horizon. It is almost always different from the MCL
estimate with the optimal forecasting formula regardless the forecasting horizon.

To determine whether the predictive model belongs to the set of “best” predictive
model or not, we employ the model confidence set (MCS). Table 18 reports the p-value
of the semi-quadratic statistic obtained from 2,000 bootstrap iterations with a block
length of 12. Values in boldface denote that the model belongs to the confidence set of
the best models. From Table 18, we can see that the MM estimate with WXY formula,
the MCL estimate with WXY’s formula and the MM estimate with optimal forecasting
formula are always rejected regardless of the In(RV') series and forecasting horizon. The
ML estimate with WXY’s formula is rejected in all but four cases. The MCL estimate
with optimal forecasting formula is rejected in a few cases. Most importantly, in no case,
ML-estimated with optimal forecasting formula can be rejected. Similar conclusions can

be obtained at the 5-day horizon.
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Table 17: DM statistic for h-day-ahead-forecast of In (RV') of fOU using three different estima-
tion methods and two different forecasting methods (the benchmark model is ML with optimal).

Time series SPY XLB XLE XLF XLI XLK XLP XLU XLV XLY
Panel A: h =1
MMAWXY -4.5116 -3.8385 -3.5269 -3.2693 -3.3666 -3.2396 -3.1542 -3.8318 -3.5463  -4.6066
(0.0000) (0.0000) (0.0002) (0.0005) (0.0003) (0.0005) (0.0008) (0.0000) (0.0002) (0.0000)
MCLAWXY -3.0971  -3.2719  -3.1773  -2.4528 -2.8837 -2.7089 -2.2910 -2.3784 -2.3762 -1.8678
(0.0000) (0.0000) (0.0000) (0.0071) (0.0020) (0.0034) (0.0110) (0.0087) (0.0087) (0.0309)
ML WXY -1.5788  -1.3418 -1.5416 -1.7029 -1.8347 -1.5122 -1.4158 -1.9957 -1.9257 -1.5220
(0.0572) (0.0898) (0.0616) (0.0443) (0.0333) (0.0652) (0.0784) (0.0230) (0.0271) (0.0640)
MM +optimal -2.6540 -2.3950 -2.7799 -2.0675 -2.0138 -1.9010 -2.9484 -3.0341 -2.5463 -2.6597
P (0.0040) (0.0083) (0.0027) (0.0193) (0.0220) (0.0287) (0.0016) (0.0012) (0.0054) (0.0039)
MCL+-optimal -1.1982 -1.0351 -1.4686  -1.5823 -1.4006 -1.2531 -1.1705 -1.0721 -1.1042  -1.0678
P (0.1154) (0.1503) (0.0710) (0.0568) (0.0807) (0.1051) (0.1209) (0.1418) (0.1348) (0.1428)
Panel A: h =5
MMALWXY -3.3756  -3.1275  -3.2530 -3.3495 -3.4455 -3.4796 -3.2736 -3.0693 -3.0746 -3.1288
(0.0004) (0.0009) (0.0006) (0.0004) (0.0003) (0.0003) (0.0005) (0.0011) (0.0011) (0.0009)
MCL+WXY -2.8407  -2.2543  -2.8143 < -2.2435 -2.9293 -2.3500 -2.1966  -2.2511 -2.6160 -2.4733
(0.0023) (0.0121) (0.0024) (0.0124) (0.0017) (0.0094) (0.0140) (0.0122) (0.0044) (0.0067)
MLAWXY -1.3067 -1.3949 -1.2046 -1.3749 -2.0173 -2.0687 -1.2844 -1.5998 -1.4599 -1.2001
(0.0957) (0.0815) (0.1142) (0.0846) (0.0218) (0.0193) (0.0995) (0.0548) (0.0722) (0.1151)
MM +optimal -1.5901 -2.1619 -1.3208 -1.4020 -1.2482 -2.2660 -1.6710 -1.6781 -1.4876 -1.2299
P (0.0559) (0.0153) (0.0933) (0.0805) (0.1060) (0.0117) (0.0474) (0.0467) (0.0684) (0.1094)
MCL+-optimal -1.2735 -1.1482 -1.1784  -1.3128 -1.1434 -1.0918 -1.1842 -1.3945 -1.2179  -1.0406
P (0.1014) (0.1255) 0.1193 (0.0946) (0.1264) (0.1375) (0.1182) (0.0816) (0.1116) (0.1490)

Table 18: p-values of MSC for h-day-ahead-forecast of In (RV') of fOU using three different
estimation methods and two different forecasting methods (the benchmark model is ML with

optimal).

Time series SPY XLB XLE XLF XLI XLK XLP XLU XLV XLY
Panel A: h=1

MM+WXY  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MCL+WXY 0.0025 0.0077 0.0053 0.0296 0.0384 0.0365 0.0694 0.0631 0.0897 0.0015
ML+WXY 0.0285 0.1188 0.0933 0.0885 0.1077 0.1045 0.1349 0.1050 0.1715 0.0165
MM+optimal 0.0248 0.0339 0.0328 0.0418 0.0536 0.0611 0.0899 0.0747 0.0904 0.0035
MCL+optimal 0.3025 0.3622 0.2245 0.2545 0.3188 0.1365 0.2754 0.2241 0.2075 0.0455
ML+optimal 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Panel B: h =5

MM+WXY  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MCL+WXY 0.0021 0.0030 0.0047 0.0023 0.0084 0.0019 0.0023 0.0017 0.0023 0.0044
ML+WXY  0.0911 0.1423 0.0930 0.0785 0.1405 0.1180 0.0939 0.0911 0.1258 0.0709
ML+WXY  0.0870 0.0537 0.0517 0.0285 0.0491 0.0599 0.0643 0.0416 0.0394 0.0690
MCL+optimal 0.2061 0.3488 0.3000 0.2960 0.1809 0.1920 0.1235 0.2719 0.2611 0.0953
ML+optimal 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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