Robo-Advising: A Dynamic Mean-Variance Approach
主 题: | Robo-Advising: A Dynamic Mean-Variance Approach |
主讲人: | Min Dai(Professor, National University of Singapore) |
主持人: | 曾燕(中山大学岭南学院 副教授) |
时 间: | 2018年03月19日16:30-18:30 |
地 点: | 岭南堂汪道涵会议室 |
主办单位: | 中山大学岭南学院; 国家自然科学基金创新研究群体“金融创新、资源配置与风险管理” |
讲座简介:
摘要:
In contrast to the traditional financial advising, robo-advising needs to elicit investors' risk profile via several simple online questions and to provide advice consistent with conventional investment wisdom, e.g. rich and young people should invest more in risky assets. We propose a dynamic portfolio choice model with the mean-variance criterion over portfolio log-returns that meets the two challenges. The model yields analytical and time-consistent optimal portfolio policies and can be used for robo-advising. This work is jointly with Hanqing Jin, Steven Kou, and Yuhong Xu.
主讲人简介:
报告人简介:
戴民教授自2004年起任教新加坡国立大学,现任新加坡国立大学数量金融中心主任、数量金融硕士项目主任、风险管理研究所副所长。专长数理金融,在金融衍生产品定价与对冲以及动态投资策略等领域做了很多深入的工作。文章发表在“Review of Financial Studies”, “Journal of Financial and Quantitative Analysis”,“Mathematical Finance”,“Journal of Economic Theory”,“Journal of Economic Dynamics & Control”,“Management Science”等金融、经济及管理期刊。目前担任“Journal of Economic Dynamics & Control”, “SIAM Journal on Financial Mathematics”等期刊编委。